C++优先队列解决哈夫曼(Huffmam)编码问题 (STL priority_queue)

Huffman树和Huffman编码的概念在此不再赘述了。

实现Huffman树的难点在于如何从节点集合中找到两个权最小的节点并将其合并。
STL中的priority_queue基于小顶堆实现,能满足较快找到权重最小两节点的要求。

1.priority_queue的基本用法

首先对priority_queue的基本用法做简要介绍

#include <iostream>
#include <queue>
using namespace std;
struct Node
{
    int n;
    Node(int _n):n(_n){}
};
//自定义比较类
struct cmp
{
    bool operator() (const Node &a, const Node &b)
    {
        return a.n > b.n;
    }
};
int main()
{
    //声明一个优先队列pq
    priority_queue<Node, vector<Node>, cmp> pq;
    Node n1(9);
    Node n2(1);
    Node n3(5);
    Node n4(2);
    //将元素依次插入优先队列pq
    pq.push(n1);
    pq.push(n2);
    pq.push(n3);
    pq.push(n4);
    //输出队首元素,输出结果为1
    cout << pq.top().n << endl;
    //取出队首元素
    pq.pop();
    return 0;
}

2.实现Huffman编码

#include<iostream>
#include<cstdio>
#include<queue>
#include<deque>
using namespace std;
//字符结构体
struct Hcode
{
    char ch;//字符
    deque<int> huffcode;//字符的哈夫曼编码
};
//Huffman树节点
struct Hnode
{
    int weight = 0;
    Hnode *parent = NULL;
    Hnode *Lchild = NULL;
    Hnode *Rchild = NULL;
};
struct cmp
{
    bool operator() (const Hnode *a, const Hnode *b)
    {
        return a->weight > b->weight;
    }
};
//Huffman树构造函数
void huff_init(priority_queue<Hnode*, vector<Hnode*>, cmp>& pq, int n)
{
    for(int i=0; i<n-1; i++)
    {
        if(pq.size() == 1)
            break;

        Hnode *Pnode = new Hnode();
        Hnode *Lnode = pq.top();
        pq.pop();
        Hnode *Rnode = pq.top();
        pq.pop();
        Pnode->weight = Lnode->weight + Rnode->weight;
        Pnode->Lchild = Lnode;
        Pnode->Rchild = Rnode;
        Lnode->parent = Pnode;
        Rnode->parent = Pnode;
        pq.push(Pnode);
    }

}
//Huffman编码获取函数
/*获取Huffman编码的基本思想是从Huffman树的叶子节点出发,自底向上
 * 若当前结点为父节点的左子树则在huffcode头部插入编码1,为左子树
 * 则在huffcode头部插入编码0(01顺序不影响最优编码长度),直到根
 * 节点,Huffman编码获取完成,从huffcode中顺序输出即可*/
void huff_code(Hnode *node, Hcode *code, int n)
{
    for(int i=0; i<n; i++)
    {
        Hnode *currNode = &node[i];
        for(;;)
        {
            if(currNode->parent == NULL)
                break;
            else
            {
                if(currNode->parent->Rchild == currNode)
                {
                    code[i].huffcode.push_front(1);
                }
                else
                {
                    code[i].huffcode.push_front(0);
                }
            }
            currNode = currNode->parent;
        }
    }
}
//Huffman编码输出函数
void huff_print(Hcode *code, int n)
{
    for(int i=0; i<n; i++)
    {
        printf("%c 's Huffman code is:",code[i].ch);
        deque<int>::iterator it;
        for(it = code[i].huffcode.begin(); it != code[i].huffcode.end(); it++)
            cout << *it;
        cout << endl;
    }
}
int main()
{
    int n;//字符数
    scanf("%d",&n);
    Hcode code[n];
    Hnode node[n];
    //依次读入字符频率
    for(int i=0; i<n; i++)
        scanf("%d",&node[i].weight);
    fflush(stdin);
    //依次读入字符
    for(int i=0; i<n; i++)
        scanf("%c",&code[i].ch);

    //构造优先队列并初始化
    priority_queue<Hnode*, vector<Hnode*>, cmp> pq;
    for(int i=0; i<n; i++)
        pq.push(node+i);

    //构造Huffman树
    huff_init(pq, n);
    //获得Huffman编码
    huff_code(node, code, n);
    //输出Huffman编码
    huff_print(code, n);

    return 0;
}

3.输入输出样例

input:
6
45 13 12 16 9 5
ABCDEF

output:
A 's Huffman code is:0
B 's Huffman code is:101
C 's Huffman code is:100
D 's Huffman code is:111
E 's Huffman code is:1101
F 's Huffman code is:1100



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值