Linux(Ubuntu)使用不同版本的CUDA(nvcc)

文章详细介绍了如何从NVIDIA官网下载不同版本的CUDA工具包,然后通过指定路径检查安装情况。接着,它讲解了如何编辑.bashrc文件来配置CUDA路径,特别是添加11.7版本的路径到环境变量中,并通过source命令激活配置。最后,使用nvcc-V命令验证CUDA版本设置是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不同版本的CUDA下载地址
https://developer.nvidia.com/cuda-toolkit-archive

根据提示选择适当的版本下载即可,可以安装不同版本的CUDA。

安装完成后:

查看该路径下的文件:

ls /usr/local/

在这里插入图片描述
可以看到安装过不同版本CUDA的路径。

接下来进行配置,编辑.bashrc文件:

vim ~/.bashrc

在最后加入两行,对应想使用的CUDA版本所在的路径,比如我想使用11.7版本:

export PATH=/usr/local/cuda-11.7/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH

最后激活配置文件:

source ~/.bashrc

配置完成,可以用nvcc -V命令查看当前的CUDA(nvcc)版本。

参考:
https://blog.csdn.net/onepunch_k/article/details/123334444?spm=1001.2014.3001.5506

<think>好的,我需要帮助用户确定在Ubuntu 18.04上应该下载哪个版本CUDA。首先,我得考虑Ubuntu 18.04的兼容性。CUDA对系统内核版本和GCC编译器有特定要求,所以用户需要先检查这些。 接下来,用户使用的NVIDIA显卡型号会影响CUDA版本的选择。较新的显卡可能需要更高版本CUDA支持。例如,RTX 30系列需要CUDA 11.1及以上。用户需要运行`nvidia-smi`来查看显卡和推荐的驱动版本,因为驱动版本CUDA版本有关联。 然后,用户的具体应用场景也很重要。如果他们使用深度学习框架如TensorFlow或PyTorch,这些框架通常有推荐的CUDA版本。比如,TensorFlow 2.5可能需要CUDA 11.2,而PyTorch 1.8可能推荐CUDA 11.1。用户应参考框架文档来确认兼容性。 CUDA Toolkit的版本选择建议方面,Ubuntu 18.04官方支持到CUDA 11.x。虽然可能有社区方法安装更新版本,但稳定性优先的话,推荐CUDA 11.8或11.4。对于需要最新功能的用户,可能需要升级到Ubuntu 20.04或更高以使用CUDA 12.x。 安装步骤方面,用户需要先添加NVIDIA仓库,安装驱动,然后安装CUDA Toolkit。同时要提醒用户设置环境变量,并验证安装是否成功。 最后,提醒用户注意驱动兼容性,CUDA版本和NVIDIA驱动的版本必须匹配,避免冲突。如果遇到问题,建议查阅NVIDIA官方文档或社区支持。</think>在Ubuntu 18.04(注意:Ubuntu官方没有18.10版本,猜测您可能指18.04 LTS)上选择CUDA版本时,需综合考虑以下因素: --- ### **1. 系统兼容性** - **Ubuntu 18.04 LTS** 官方支持的最高CUDA版本为 **CUDA 11.x**(需手动安装驱动) - 最新版CUDA(如12.x)可能需要更高版本Linux内核或库文件,需自行验证兼容性 --- ### **2. 显卡型号** - **NVIDIA显卡架构**决定支持的最高CUDA版本: - Maxwell架构(如GTX 900系列):最高支持CUDA 11.x - Pascal(GTX 10系列)、Volta(Titan V)、Ampere(RTX 30系列):推荐CUDA 11.x或更新 - 运行 `nvidia-smi` 可查看显卡支持的CUDA版本上限 --- ### **3. 应用需求** - **深度学习框架依赖关系**: - TensorFlow 2.x:推荐CUDA 11.2(对应cuDNN 8.1) - PyTorch 1.10+:推荐CUDA 11.3或11.6 - 若需兼容旧项目,可选择CUDA 10.2(但需验证驱动支持) --- ### **4. 推荐版本组合** | 使用场景 | CUDA版本 | 驱动版本要求 | 安装方式 | |---------------------|-----------|-------------------|------------------------| | 兼容性优先 | 11.8 | ≥520.61.05 | 通过NVIDIA官网.run文件 | | 深度学习开发 | 11.6/11.7 | ≥510.47.03 | `apt`仓库安装 | | 旧硬件支持 | 10.2 | ≥440.33 | 需手动降级驱动 | --- ### **5. 安装步骤示例(以CUDA 11.8为例)** ```bash # 添加NVIDIA仓库 sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list # 安装驱动和CUDA Toolkit sudo apt update sudo apt install -y nvidia-driver-520 sudo apt install -y cuda-toolkit-11-8 # 设置环境变量 echo 'export PATH=/usr/local/cuda-11.8/bin:$PATH' >> ~/.bashrc echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc source ~/.bashrc # 验证安装 nvcc --version ``` --- ### **6. 注意事项** - **驱动冲突**:避免混合使用`apt`和.run文件安装,可能导致驱动不一致 - **内核更新**:升级内核后需重新安装NVIDIA驱动 - **多版本管理**:可通过`update-alternatives`管理多个CUDA版本 建议访问[NVIDIA CUDA Toolkit Archive](https://developer.nvidia.com/cuda-toolkit-archive)查看历史版本的系统要求。若需最新版CUDA,建议升级到Ubuntu 20.04/22.04 LTS。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值