互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(五)——数据仓库维度建模实例

原创 2015年08月12日 01:11:44
维度建模实例


库存管理业务建模案例
1. 选定某一业务过程,如:库存管理业务
2.根据各用户的需求(关注的主题),定义该业务处理的粒度。
主题一:矿厂中每种产品库存水平的日快照
主题二:每种特定产品的仓库库存事务每日情况
主题三:每种特定产品每日的入库装运情况
3.选定每个事实表维度
库存水平   事实表维度:日期、矿厂、产品
仓库库存事务 事实表维度:日期、仓库、产品、供应商、事务类型
入库装运   事实表维度:到货日期、检测日期、入库日期、销售批准日期、分拣日期、装箱日期、装运日期、销售批准日期、分拣日期、装箱日期、装运日期、最近回收日期、产品、供应商、仓库
4.确定每个事实表的数字型事实
库存水平   事实表数字型事实:现有数量
仓库库存事务 事实表数字型事实:事实表维度:仓库库存事务金额
入库装运   事实表数字型事实:到货量、检测量、退货量、入库量、批准销售量、分拣量、装箱量、装运量、回收量、顾客退货量
5.确定模型
星形模型
主题一:矿厂库存快照事实,周围三个维:日期维、矿厂维、产品维;
矿厂库存快照事实表包括:日期关键字、产品关键字、矿厂关键字、现有数量;其他维度表有:相应关键字及其属性。
主题二:仓库库存事务事实,周围5个维:日期维、产品维、供应商维、仓库维、库存事务类型维;
主题三:仓库库存累积事实,周围维度表有:到货日期维度、检测日期维度、入库日维度等。




电信DW建模案例
1. 明确业务需求。分解需求。
如:用户行为分析=哪些行为?时长、话费、次数...
  用户行为分析=哪些角度?时间、区域、语音、主被叫
2. 确定数据存储粒度。
注:电信DW中,事实表基本是以聚焦型事实表为准,因此粒度基本上由维度决定。
当前细节级ODS:用户通话清单
轻度综合级EDS:用户每日通话汇总
高度综合级DM:用户每月通话汇总
3.确定每个事实表维度:时间、区域、语音、主被叫
时间:分析时段的通话情况,明确闲忙时段区间;
分析每日每周每月通话情况,了解市场稳定性
区域:分析用户漫游、长途通话,制定套餐调整资费
语音:分析用户语音通话行为,分析用户数据业务通话行为
4.确定每个事实表的数字型字段:时长、话费、次数
时长:通话开始时间和结束时间计算得到
话费:本地、长途、漫游;应该不包含优惠冲减话费、话费计算规则
次数:累计通话


5.确定模型
星形模型

大数据环境下互联网行业数据仓库/数据平台的架构之漫谈

导读: 整体架构数据采集数据存储与分析数据共享数据应用实时计算任务调度与监控元数据管理总结 一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说...
  • huanggang028
  • huanggang028
  • 2016年05月08日 18:53
  • 2201

数据仓库维度建模举例

设计数据仓库常用到的模型是维度模型。例如决策者想知道去年一年里哪个产品在哪个地区销售得最好,那么决策者想要得到的信息有3个:时间、产品和地区,这3个信息称为“维度”。维度模型的作用是将决策者所要分析的...
  • chenmeng2192089
  • chenmeng2192089
  • 2013年11月19日 16:03
  • 1949

数据仓库专题20-案例篇:电商领域数据主题域模型设计v0.1(改进意见征集中)

一、电商分类(平台+自营+复合)  (1)平台型电商:淘宝+天猫+百度Mall等;  (2)自营型电商:         2.1 综合型:京东(早期)+当当(早期);         2.2 垂直型:...
  • zhangziliang09
  • zhangziliang09
  • 2016年03月14日 16:36
  • 2214

电子商务数据仓库架构

根据目前了解知识,简单介绍电子商务大数据的数据仓库架构,希望大家批评指正。             首先说说数据仓库建设的几大部分:        一、计算平台、展示平台          ...
  • sean_zhou
  • sean_zhou
  • 2012年04月16日 22:40
  • 1276

互联网电商大数据架构图

  • china_demon
  • china_demon
  • 2016年07月11日 17:45
  • 749

互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(一)——简介入门

互联网电商大数据环境 ——数据分析实践培训精华笔记(一) 工作内容 项目:DW数据库建设/经分/客户精准营销/推荐系统需求/移动端数据分析 数据:流量数据/交易数据B2C/会员与活动数据/物流与配...
  • houxiaoqin
  • houxiaoqin
  • 2015年08月11日 09:56
  • 1196

互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(二)——BI构建

BI构建 BI应用架构 BI底层:数据源——ETL——BI数据仓库  BI服务:交互式信息板、报告并发布、即席分析、预先检测和警报、离线分析、MS Office插件、Web服务 BI应...
  • houxiaoqin
  • houxiaoqin
  • 2015年08月11日 13:37
  • 699

数据仓库维度建模(针对多种业务的数据仓库总线结构)

数据仓库总线结构:多种不同的业务: 遵循一致性维度、一致性事实 reference:   http://blog.itpub.net/23716337/viewspace-1118...
  • u012075079
  • u012075079
  • 2016年08月08日 10:49
  • 204

互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(六)——电商核心业务知识之订单商品模块

电商核心业务知识 订单商品模块(9张表) --订单主要信息表 drop table if exists itqsc.ods_b2c_orders; create external ta...
  • houxiaoqin
  • houxiaoqin
  • 2015年08月13日 14:26
  • 811

互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(四)——维度建模基础理论

维度建模基础理论 事实表 事实表保存了大量业务度量数据(即事实)的表。最有用的事实是数字类型、可加类型。 事实表以粒度化分:事务粒度事实表(细)、周期快照粒度事实表、累积快照粒度事实表(...
  • houxiaoqin
  • houxiaoqin
  • 2015年08月11日 15:47
  • 827
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(五)——数据仓库维度建模实例
举报原因:
原因补充:

(最多只允许输入30个字)