互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(五)——数据仓库维度建模实例
维度建模实例


库存管理业务建模案例
1. 选定某一业务过程,如:库存管理业务
2.根据各用户的需求(关注的主题),定义该业务处理的粒度。
主题一:矿厂中每种产品库存水平的日快照
主题二:每种特定产品的仓库库存事务每日情况
主题三:每种特定产品每日的入库装运情况
3.选定每个事实表维度
库存水平   事实表维度:日期、矿厂、产品
仓库库存事务 事实表维度:日期、仓库、产品、供应商、事务类型
入库装运   事实表维度:到货日期、检测日期、入库日期、销售批准日期、分拣日期、装箱日期、装运日期、销售批准日期、分拣日期、装箱日期、装运日期、最近回收日期、产品、供应商、仓库
4.确定每个事实表的数字型事实
库存水平   事实表数字型事实:现有数量
仓库库存事务 事实表数字型事实:事实表维度:仓库库存事务金额
入库装运   事实表数字型事实:到货量、检测量、退货量、入库量、批准销售量、分拣量、装箱量、装运量、回收量、顾客退货量
5.确定模型
星形模型
主题一:矿厂库存快照事实,周围三个维:日期维、矿厂维、产品维;
矿厂库存快照事实表包括:日期关键字、产品关键字、矿厂关键字、现有数量;其他维度表有:相应关键字及其属性。
主题二:仓库库存事务事实,周围5个维:日期维、产品维、供应商维、仓库维、库存事务类型维;
主题三:仓库库存累积事实,周围维度表有:到货日期维度、检测日期维度、入库日维度等。




电信DW建模案例
1. 明确业务需求。分解需求。
如:用户行为分析=哪些行为?时长、话费、次数...
  用户行为分析=哪些角度?时间、区域、语音、主被叫
2. 确定数据存储粒度。
注:电信DW中,事实表基本是以聚焦型事实表为准,因此粒度基本上由维度决定。
当前细节级ODS:用户通话清单
轻度综合级EDS:用户每日通话汇总
高度综合级DM:用户每月通话汇总
3.确定每个事实表维度:时间、区域、语音、主被叫
时间:分析时段的通话情况,明确闲忙时段区间;
分析每日每周每月通话情况,了解市场稳定性
区域:分析用户漫游、长途通话,制定套餐调整资费
语音:分析用户语音通话行为,分析用户数据业务通话行为
4.确定每个事实表的数字型字段:时长、话费、次数
时长:通话开始时间和结束时间计算得到
话费:本地、长途、漫游;应该不包含优惠冲减话费、话费计算规则
次数:累计通话


5.确定模型
星形模型
阅读更多
个人分类: 互联网电商大数据
想对作者说点什么? 我来说一句

维度建模的完全指南

2012年12月24日 9.77MB 下载

没有更多推荐了,返回首页

不良信息举报

互联网电商大数据环境 ——大数飓数据分析实践培训精华笔记(五)——数据仓库维度建模实例

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭