During the lesson small girl Alyona works with one famous spreadsheet computer program and learns how to edit tables.
Now she has a table filled with integers. The table consists of n rows and m columns. By ai, j we will denote the integer located at the i-th row and the j-th column. We say that the table is sorted in non-decreasing order in the column j if ai, j ≤ ai + 1, j for all i from 1 to n - 1.
Teacher gave Alyona k tasks. For each of the tasks two integers l and r are given and Alyona has to answer the following question: if one keeps the rows from l to r inclusive and deletes all others, will the table be sorted in non-decreasing order in at least one column? Formally, does there exist such j thatai, j ≤ ai + 1, j for all i from l to r - 1 inclusive.
Alyona is too small to deal with this task and asks you to help!
The first line of the input contains two positive integers n and m (1 ≤ n·m ≤ 100 000) — the number of rows and the number of columns in the table respectively. Note that your are given a constraint that bound the product of these two integers, i.e. the number of elements in the table.
Each of the following n lines contains m integers. The j-th integers in the i of these lines stands for ai, j(1 ≤ ai, j ≤ 109).
The next line of the input contains an integer k (1 ≤ k ≤ 100 000) — the number of task that teacher gave to Alyona.
The i-th of the next k lines contains two integers li and ri (1 ≤ li ≤ ri ≤ n).
Print "Yes" to the i-th line of the output if the table consisting of rows from li to ri inclusive is sorted in non-decreasing order in at least one column. Otherwise, print "No".
5 4 1 2 3 5 3 1 3 2 4 5 2 3 5 5 3 2 4 4 3 4 6 1 1 2 5 4 5 3 5 1 3 1 5
Yes No Yes Yes Yes No
In the sample, the whole table is not sorted in any column. However, rows 1–3 are sorted in column 1, while rows 4–5 are sorted in column 3.
题意:n行m列的格子,每个格子里都有一个数,如果有一列的元素都非递减,那么就称这列为非递减列。现在给你l和r求l行到r行之间的这m列是否存在非递减列。
思路:orz强势暴力TLE了...哈哈...
这道题其实也很水了....当时愣是没想到....菜...还是某巨给了我思路
没啥好说的了,开一个数组ans[i]记录下以当前行为右边界递增的话它的左边界最小是第几行,然后输入一对l,r ans[r]<=l 就满足。
至于怎么求这个ans,就是一个简单的dp 如果当前值比上一行打就dp[i][j]=dp[i-1][j] 否则dp[i][j]=i;
注意要对每列取一个最值
具体见代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
int a[2][maxn];
vector<int>dp[maxn];
int ans[maxn];
int main()
{
int n,m,k,l,r;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
ans[i]=i;//初始为自己所在的行
for(int j=0;j<m;j++)
{
if(i==1)
{
scanf("%d",&a[1][j]);
dp[i].push_back(i);
}
else
{
scanf("%d",&a[1][j]);
if(a[1][j]>=a[0][j])
{
dp[i].push_back(dp[i-1][j]);
}
else
{
dp[i].push_back(i);
}
}
ans[i]=min(ans[i],dp[i][j]);
}
for(int j=0;j<m;j++)
a[0][j]=a[1][j];
}
scanf("%d",&k);
for(int i=0;i<k;i++)
{
scanf("%d%d",&l,&r);
if(ans[r]<=l)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
表格非递减排查询

本文介绍了一种解决特定表格查询问题的方法,该问题是判断给定范围内的行是否至少有一列处于非递减排列。通过使用动态规划预先计算每列的递增边界,可以高效地回答此类查询。
1260

被折叠的 条评论
为什么被折叠?



