排序:
默认
按更新时间
按访问量

图论总结

图论总结 二分图最大匹配 km最大权最小权 最大流 最小费用最大流 强联通分量 割点点双联通 割边边双联通 最大团 带权并查集 图论总结 二分图最大匹配 int match[MAXN]; bool vis[MAXN]; bool dfs(int u) { for...

2017-08-19 09:32:21

阅读数:150

评论数:0

数论总结

数论总结 欧拉定理 aφ(n)≡1(modn)" role="presentation" style="position: relative;">aφ(n)≡1(modn)aφ(n)≡1(m...

2017-08-18 22:00:10

阅读数:124

评论数:0

出错总结欢迎提供建议

本文章记录编写题目代码时容易犯错的地方,提交代码之前,请务必一一检查确保正确。 手动扩栈:#pragma comment(linker, “/STACK:204800000,204800000”)用c++提交 1.最大流注意点的范围,不一定是n,边的数量,尤其重要,要开双倍。同样的数组范围确保...

2017-08-12 22:08:24

阅读数:106

评论数:0

解决Ubuntu下codeblocks无法实现括号匹配自动换行的问题

在终端输入命令: sudo apt-get install codeblocks-contrib 如果提示你需要依赖包,那多半是没有更新源,在终端输入: sudo apt-get update 如何在Ubuntu 16.04/17.04上安装Code::Blocks Code...

2018-06-07 11:47:04

阅读数:18

评论数:0

vue-router 如何在当前路由下重新点击当前路由的router-link实现刷新

<router-link to="/home" @click.native="flushCom">首页</router-link> ...

2018-05-30 19:15:13

阅读数:114

评论数:0

Windows下Node.js与npm的安装与配置

1:先下载Node.js,网站https://nodejs.org/en/,左侧为稳定版,右侧为最新版,推荐稳定版 2:Node.js安装,运行下载后的.msi文件,一路下一步就可以了,我选择的安装路径为E:\Program...

2018-05-24 10:45:31

阅读数:47

评论数:0

IDEA的校园邮箱激活方式

JetBrains开发工具免费提供学生和教师使用。取得授权后只需要使用相同的 JetBrains 帐号就可以激活其他产品,不需要重复申请。 开始申请前请先到 https://www.jetbra...

2018-05-24 10:21:39

阅读数:84

评论数:0

Vue学习(todolist小实例)

包括功能开发、组件拆分、组件与实例的关系、以及删除功能。 <!DOCTYPE html> <html lang="en"> <head&a...

2018-05-22 21:39:27

阅读数:13

评论数:0

区块链 科普+扫盲

有幸听了徐梁老师的讲解。 徐 梁:中国科学院博士,高级工程师职称。长期从事信息技术领域的研究工作和相关产品的售前、售后技术支持工作。其中从事技术产品和相关知识领域的培训工作近二十年。对于通信行业的各产品线均有所了解,熟悉核心网交换技术、宽带接入技术、IP网络技术、虚拟化技术,以及Linux操作平...

2018-04-30 22:07:09

阅读数:20

评论数:0

腾讯游戏客户端开发面试

一面 上来是问了一个较简单的编程题,有100盏灯,从1~100编号,开始灯的状态是亮的,然后按照1的倍数,2的倍数,3的倍数。。。一直到100的倍数翻转,问你最后熄灭的是哪几盏灯。当时应该仔细想好再写代码的,一开始思路略微麻烦了一些,其实类似素数筛那样走一遍就可以了,大概nlogn。 然后问了...

2018-04-17 08:59:27

阅读数:79

评论数:0

L2-4 链表去重

L2-4 链表去重(25 分) 给定一个带整数键值的链表 L,你需要把其中绝对值重复的键值结点删掉。即对每个键值 K,只有第一个绝对值等于 K 的结点被保留。同时,所有被删除的结点须被保存在另一个链表上。例如给定 L 为 21→-15→-15→-7→15,你需要输出去重后的链表 21→-15→-...

2018-03-28 14:01:31

阅读数:126

评论数:0

7-4 家谱处理

人类学研究对于家族很感兴趣,于是研究人员搜集了一些家族的家谱进行研究。实验中,使用计算机处理家谱。为了实现这个目的,研究人员将家谱转换为文本文件。下面为家谱文本文件的实例: John Robert Frank Andrew Nancy David 家谱...

2018-03-28 13:58:11

阅读数:47

评论数:0

C++ string字符串的增删改查

转载请标明出处: http://blog.csdn.net/u011974987/article/details/52505004 本文出自:【徐Xiho的博客】 c...

2018-03-10 11:38:05

阅读数:36

评论数:0

python中array.sum(axis=?)的用法

根据代码中运行的结果来看,主要由以下几种: 1. sum():将array中每个元素相加的结果 2. axis对应的是维度的相加。 比如: 1、axis=0时,对饮搞得是第一个维度元素的相加, [[0,1,2,3],[4,5,6,7]]...

2018-03-04 21:44:57

阅读数:36

评论数:0

K-近邻算法

k-近邻算法概述 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。 工作原理:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。输入没有标签的新数据后,将...

2018-02-26 17:00:47

阅读数:32

评论数:0

模型评估与选择

评估方法 留出法:直接将数据集D划分为两个互斥的集合,其中一个是训练集S,另一个是测试机(准确说是验证集)T。训练集和验证集的划分要尽可能保持数据分布一致。常用作法将数据集的2/3 ~ 4/5用作训练集,其余的用作验证集。由于存在很多种把数据集进行划分的方法,所以,通常进行多次数据集的划分...

2018-02-26 14:58:10

阅读数:47

评论数:0

模型评估与模型选择

评价一个机器学习模型的好坏需要特定的评估方法,并据此对模型进行选择,从而得到一个更好的模型。本文主要是关于模型评估与模型选择的笔记,以及利用 scikit-learn 对 Logistic回归进行的结果进行交叉检验。 1.训练误差,测试误差与泛化误差 学习器(模型)在训练集上表现出来的误差...

2018-01-31 21:30:38

阅读数:61

评论数:0

Logistic回归

基于Logistic回归和Sigmoid函数的分类 logistic回归: 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 适用数据类型:数值型和标称型数据。 Sigmoid函数具体的计算公式为如下: δ(z)=11+e&#...

2018-01-29 21:47:12

阅读数:320

评论数:2

决策树

创建分支的伪代码函数createBranch() if so return 类标签 else 寻找划分数据集的最好特征 划分数据集 创建分支节点 for 每个划分的子集 调用函数createBranch并增加返回结果到分支节点...

2018-01-25 21:39:19

阅读数:62

评论数:0

机器学习开篇

相关术语 通常我们为算法输入大量已分类数据作为算法的训练集。 训练集是用于训练机器学习算法的数据样本集合。 目标变量是机器学习算法的预测结果,在分类算法中目标变量的类型通常是标称型的,而在回归算法中通常是连续型的。 训练样本集必须确定知道目标变量的值,以便机器学习算法可以发现特征和目标变量之...

2018-01-25 10:57:02

阅读数:173

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭