【莫比乌斯反演】非正常套路

本文记录笔者在刷莫比乌斯反演题时遇到的奇怪套路,基础的部分自动省略。

持续更新中…
#强行上性质
题目:【51NOD 1190】 最小公倍数之和 V2
##题目大意:
求:
∑ i = a b l c m ( i , b ) \sum_{i=a}^b lcm(i,b) i=ablcm(i,b)

本题式子可以变成这样:
A n s = b ∑ d ∣ b ∑ i = ⌈ a d ⌉ b d i [ gcd ⁡ ( i , b d ) = 1 ] Ans=b\sum_{d|b}\sum_{i=\lceil\frac{a}{d}\rceil}^{\frac{b}{d}}i[\gcd(i,\frac{b}{d})=1] Ans=bdbi=dadbi[gcd(i,db)=1]

强行上性质: ∑ d ∣ n μ ( d ) = [ n = 1 ] \sum_{d|n}\mu(d)=[n=1] dnμ(d)=[n=1]

A n s = b ∑ d ∣ b ∑ i = ⌈ a d ⌉ b d i ∗ ∑ d ′ ∣ gcd ⁡ ( i , b d ) μ ( d ′ ) Ans=b\sum_{d|b}\sum_{i=\lceil\frac{a}{d}\rceil}^{\frac{b}{d}}i*\sum_{d'|\gcd(i,\frac{b}{d})}\mu(d') Ans=bdbi=dadbidgcd(i,db)μ(d)

这样既可解决

#莫比乌斯反演性质
在做题时也万万不可忘记基本的莫比乌斯反演性质,即:

f ( i ) f(i) f(i)为积性函数时,设 g ( n ) = ∑ d ∣ n f d g(n)=\sum_{d|n}f_d g(n)=dnfd,则 g ( n ) g(n) g(n)也为积性函数

这个还可以扩展一下,即
f ( i ) f(i) f(i)为积性函数时,设 g ( n ) = ∑ d ∣ n f d ∗ d g(n)=\sum_{d|n}f_d*d g(n)=dnfdd,则 g ( n ) g(n) g(n)也为积性函数
这个挺显然的,但很容易被忽略

题目:【51NOD 1190】 最小公倍数之和 V2

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值