(注意,以下除法若未说明自动下取整)
首先放一个莫比乌斯反演常用的两条公式以及证明:莫比乌斯反演定理证明(两种形式)
其中主要用到的是这一条(为了强化记忆我专门手打了一遍
G(d)=∑d|nF(n)==>F(n)=∑n|dμ(d/n)∗G(d) G ( d ) = ∑ d | n F ( n ) ==> F ( n ) = ∑ n | d μ ( d / n ) ∗ G ( d )
然后再放一个莫比乌斯反演裸题:bzoj 1101此题的题解可自行去网上搜索;
而平时经常能遇到这类问题:
ans=∑i=1n∑j=1mf(gcd(i,j)) a n s = ∑ i = 1 n ∑ j = 1 m f ( g c d ( i , j ) )
其中f()可以替换成任意函数;
这时候可以选择枚举其gcd是多少,设gcd=d,原式化为:
∑d=1min(n,m)∑i=1n∑j=1m[gcd(i,j