莫比乌斯反演常用套路整理

本文介绍了莫比乌斯反演的基本公式及其证明,并通过一个实例bzoj 1101来展示如何运用莫比乌斯反演解决实际问题,适合具有相同思考方式的学习者参考。
摘要由CSDN通过智能技术生成

(注意,以下除法若未说明自动下取整)
首先放一个莫比乌斯反演常用的两条公式以及证明:莫比乌斯反演定理证明(两种形式)
其中主要用到的是这一条(为了强化记忆我专门手打了一遍

G(d)=d|nF(n)==>F(n)=n|dμ(d/n)G(d) G ( d ) = ∑ d | n F ( n ) ==> F ( n ) = ∑ n | d μ ( d / n ) ∗ G ( d )

然后再放一个莫比乌斯反演裸题:bzoj 1101此题的题解可自行去网上搜索;

而平时经常能遇到这类问题:

ans=i=1nj=1mf(gcd(i,j)) a n s = ∑ i = 1 n ∑ j = 1 m f ( g c d ( i , j ) )

其中f()可以替换成任意函数;
这时候可以选择枚举其gcd是多少,设gcd=d,原式化为:
d=1min(n,m)i=1nj=1m[gcd(i,j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值