# Constraints

Time Limit: 1 secs, Memory Limit: 32 MB

# Description

You are assigned to design network connections between certain points in a wide area. You are given a set of points in the area, and a set of possible routes for the cables that may connect pairs of points. For each possible route between two points, you are given the length of the cable that is needed to connect the points over that route. Note that there may exist many possible routes between two given points. It is assumed that the given possible routes connect (directly or indirectly) each two points in the area.

Your task is to design the network for the area, so that there is a connection (direct or indirect) between every two points (i.e., all the points are interconnected, but not necessarily by a direct cable), and that the total length of the used cable is minimal.

# Input

The input file consists of a number of data sets. Each data set defines one required network. The first line of the set contains two integers: the first defines the number P of the given points, and the second the number R of given routes between the points. The following R lines define the given routes between the points, each giving three integer numbers: the first two numbers identify the points, and the third gives the length of the route. The numbers are separated with white spaces. A data set giving only one number P=0 denotes the end of the input. The data sets are separated with an empty line.

The maximal number of points is 50. The maximal length of a given route is 100. The number of possible routes is unlimited. The nodes are identified with integers between 1 and P (inclusive). The routes between two points i and j may be given as i j or as j i.

# Output

For each data set, print one number on a separate line that gives the total length of the cable used for the entire designed network.

# Sample Input

1 0

2 3
1 2 37
2 1 17
1 2 68

3 7
1 2 19
2 3 11
3 1 7
1 3 5
2 3 89
3 1 91
1 2 32

5 7
1 2 5
2 3 7
2 4 8
4 5 11
3 5 10
1 5 6
4 2 12

0



# Sample Output

0
17
16
26


#include <iostream>
#include <algorithm>

struct Edge {
int start, end;
int len;
};

bool com(Edge a, Edge b) {
return a.len < b.len;
}

int main()
{
int city, road;
while (std::cin >> city && city != 0) {
std::cin >> road;
Edge edges[road];
for (int i = 0; i < road; ++i)
std::cin >> edges[i].start >> edges[i].end >> edges[i].len;
std::sort(edges, edges+road, com);

int root[city+1];
for (int i = 1; i <= city; ++i)
root[i] = i;
int ans = 0;
for (int i = 0; i < road; ++i) {
if (root[edges[i].start] != root[edges[i].end]) {
int temp = root[edges[i].end];
for (int j = 1; j <= city; ++j)
if (root[j] == temp)
root[j] = root[edges[i].start];
ans += edges[i].len;
}
}
std::cout << ans << std::endl;
}
}

• 本文已收录于以下专栏：

## 1083. Networking(并查集求最小生成树)

/*1083. Networking(并查集求最小生成树) */ #include #include #include #include #include #include using n...

## 算法学习【8】——1083. Networking

• BetaBin
• 2012年04月04日 09:35
• 1073

## POJ1083的代码

• 2009年05月14日 08:11
• 493B
• 下载

## 微软SQL数据库支援控件(1083KB)

• 2006年02月23日 09:05
• 1.06MB
• 下载

## 51Nod 1083 矩阵取数问题(简单DP)

1083 矩阵取数问题 基准时间限制：1 秒 空间限制：131072 KB 分值: 5 难度：1级算法题  收藏  关注 一个N*N矩阵中有不同的正...

## LT1083CK-12

• 2010年09月21日 09:28
• 277KB
• 下载

## POJ1083-Moving Tables

• 2011年07月29日 01:22
• 22KB
• 下载

## [bzoj1083][并查集][最小生成树]繁忙的都市

Description 　　城市C是一个非常繁忙的大都市，城市中的道路十分的拥挤，于是市长决定对其中的道路进行改造。城市C的道路是这样分布的：城市中有n个交叉路口，有些交叉路口之间有道路相连，两个...

## sicily题目1093 1888

• 2012年10月16日 16:25
• 1KB
• 下载

## Sicily题目分类

• 2015年10月15日 10:51
• 46KB
• 下载

举报原因： 您举报文章：sicily 1083. Networking 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)