搜狗:
1,有n*n个正方形格子,每个格子里有正数或者0,从最左上角往最右下角走,只能向下和向右走。一共走两次,把所有经过的格子的数加起来,求最大值。且两次如果经过同一个格子,则该格子的数只加一次。
思路:
搜索:一共搜(2n-2)步,每一步有四种走法。考虑不相交等条件可以剪去很多枝。
复杂度为O(4^n)
动态规划:
by:绿色夹克衫
详细算法思路:http://www.51nod.com/question/index.html#!questionId=657
s[k][i][j] = max(s[k-1][i-1][j-1],s[k-1][i-1][j],s[k-1][i][j-1],s[k-1][j][i])+map[i][k-i]+map[j][k-j];
复杂度为O(n^3)
#include <iostream>
#define MAX(a,b) (a)>(b)?(a):(b)
using namespace std;
#define N 5
int map[5][5]={
{2,0,8,0,2},
{0,0,0,0,0},
{0,3,2,0,0},
{0,10,0,0,0},
{2,0,8,0,2}};
int sumMax=0;
int p1x=0;
int p1y=0;
int p2x=0;
int p2y=0;
int curMax=0;
/*
编号系统为:
00000
11111
22222
33333
44444
走1次:编号有:0,1
走2次:编号有:0,1,2
走5次:编号有:1,2,3,4
走k次:编号有:l,l+1,l+2...,h-1 //low,high 的计算见code
编号到map坐标的转换为:
编号i,则对应map[i][k-i].
dp方程为:
s[k][i][j] = max(s[k-1][i-1][j-1],s[k-1][i-1][j],s[k-1][i][j-1],s[k-1][j][i])+map[i][k-i]+map[j][k-j];
*/
int dp(void){
int s[2*N-1][N][N];
s[0][0][0]=map[0][0];
for(int k=1;k<2*N-1;k++){
int h = k<N?k+1:N; //走k次后编号上限
int l = k<N?0:k-N+1; //走k次后编号下限
for( int i=l;i<h;i++){
for( int j=i+1; j<h; j++){
int t=0;
if( k==1||i<j-1)
t= MAX(t,s[k-1][i][j-1]);
if( i-1>=0)
t= MAX(t, s[k-1][i-1][j-1]);
if( j<h)
t= MAX(t, s[k-1][i][j]);
if( i-1>=0&&j<h)
t= MAX(t, s[k-1][i-1][j]);
s[k][i][j]=t+map[i][k-i]+map[j][k-j];
}
}
}
return s[2*N-3][N-2][N-1]+map[N-1][N-1];
}
void dfs( int index){
if( index == 2*N-2){
if( curMax>sumMax)
sumMax = curMax;
return;
}
if( !(p1x==0 && p1y==0) && !(p2x==N-1 && p2y==N-1))
{
if( p1x>= p2x && p1y >= p2y )
return;
}
//right right
if( p1x+1<N && p2x+1<N ){
p1x++;p2x++;
int sum = map[p1x][p1y]+map[p2x][p2y];
curMax += sum;
dfs(index+1);
curMax -= sum;
p1x--;p2x--;
}
//down down
if( p1y+1<N && p2y+1<N ){
p1y++;p2y++;
int sum = map[p1x][p1y]+map[p2x][p2y];
curMax += sum;
dfs(index+1);
curMax -= sum;
p1y--;p2y--;
}
//rd
if( p1x+1<N && p2y+1<N ) {
p1x++;p2y++;
int sum = map[p1x][p1y]+map[p2x][p2y];
curMax += sum;
dfs(index+1);
curMax -= sum;
p1x--;p2y--;
}
//dr
if( p1y+1<N && p2x+1<N ) {
p1y++;p2x++;
int sum = map[p1x][p1y]+map[p2x][p2y];
curMax += sum;
dfs(index+1);
curMax -= sum;
p1y--;p2x--;
}
}
int main()
{
curMax = map[0][0];
dfs(0);
cout <<"搜索结果:"<<sumMax-map[N-1][N-1]<<endl;
cout <<"动态规划结果:"<<dp()<<endl;
return 0;
}
2,有N个整数(数的大小为0-255)的有序序列,设计加密算法,把它们加密为K个整数(数的大小为0-255),再将K个整数顺序随机打乱,使得可以从这乱序的K个整数中解码出原序列。设计加密解密算法。
有三个子问题:
1,N<=16,要求K<=16*N.
2,N<=16,要求K<=10*N.
3,N<=64,要求K<=15*N.