关闭

迷宫 1

标签: 动态规划降维
100人阅读 评论(0) 收藏 举报
分类:
( 程序文件名: maze1. pas/c/cpp) 
【问题描述】
在最新版恶魔城游戏的最后一关有一个 n*m 的迷宫,入口坐标是左上角(1,1),出口坐标是右下角(n,m)。迷宫中的某些小格中有面包圈,有些没有 。为了通关,barty 和他的同伴 Bella 要吃掉尽可能多的面包圈然后同时到达出口。
由于每一步都只可以选择向右或向下走,不能回头也不能停留,他们决定在入口处开始分头行动,各自走不同的路径(不走相同的格子)到出口汇合。
那么我们的问题是,他们这样的策略最多能吃到多少面包圈?
【输入文件】文件名: maze1.in
第一行两个正整数 n,m,表示迷宫的行列数
第二行一个正整数 k,表示面包圈的个数。
接下来 k 行,每行两个数,表示每个面包圈的坐标。数据保证面包圈坐标不
超出迷宫,并且保证入口(1,1)和出口(n,m)处没有面包圈。
【输出文件】文件名: maze1.out
输出 3 个数,分别表示两个人能吃到最多面包圈的个数总和,以及两人各吃到多少个面包圈,用空格分开。如果有多个最优方案,则输出字典序最小的。
【样例输入】
4 5 5
1 3
2 1
3 1
2 5
3 3
【样例输出】

5 2 3


     作为Bella没事乱YY出的迷宫系列里的一道,这题荣兴的成为了NOIP2008传纸条问题的变种。对于原来的传纸条问题,只需要按照斜线划分阶段,经典的二取方格数问题,不再赘述。 

首先明确一点,本题若要用四维动态规划写的话肯定会超时几个点的,所以要把它降维。

dp[k][i][j]表示在第k步,a在第i行,b在第j行的最优解。(若原点算第一步的话)

状态转移方程:

dp[k][i][j] = max(dp[k-1][i-1][j],dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i][j-1]) + a[i][k-i+1] + a[j][k-j+1]);

那么问题的关键就是怎么保存令最小值最小的方案。用a[i][j]存储第二个人在第i行第j列的最优解,更新时令a[i][j]作第二关键字更新即可。详见代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-') f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,k;
int mp[105][105],dp[216][105][105],a[105][105];
int ans,maxx;
int main()
{
    freopen("maze1.in","r",stdin);
    freopen("maze1.out","w",stdout);
    int i,j,t;
    n=read(); m=read(); k=read();
    int x,y;
    for(i=1;i<=k;i++)
    {
        x=read(); y=read();
        ++mp[x][y];
    }
    for(t=1;t<=(n+m-2);t++)
    for(i=1;i<=min(n,t);i++)
    for(j=1;j<=min(n,t);j++)
    {
        if(i!=j)
        {
            int v=mp[i][t-i+1]+mp[j][t-j+1];
            int& f=dp[t][i][j];
            int& fa=a[i][t-i+1];
            if(f<dp[t-1][i][j]+v){f=dp[t-1][i][j]+v; fa=a[i][t-i]+mp[i][t-i+1];}
            else if(f==dp[t-1][i][j]+v) fa=max(fa,a[i][t-i]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i-1][j]+v){f=dp[t-1][i-1][j]+v; fa=a[i-1][t-i+1]+mp[i][t-i+1];}
            else if(f==dp[t-1][i-1][j]+v) fa=max(fa,a[i-1][t-i+1]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i][j-1]+v){f=dp[t-1][i][j-1]+v; fa=a[i][t-i]+mp[i][t-i+1];}
            else if(f==dp[t-1][i][j-1]+v) fa=max(fa,a[i][t-i]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i-1][j-1]+v) {f=dp[t-1][i-1][j-1]+v; fa=a[i-1][t-i+1]+mp[i][t-i+1];}
            else if(f==dp[t-1][i-1][j-1]+v) fa=max(fa,a[i-1][t-i+1]+mp[i][t-i+1]);
        }
    }
    maxx=dp[n+m-2][n][n-1];
    if(dp[n+m-2][n][n-1]>dp[n+m-2][n-1][n]){maxx=dp[n+m-2][n][n-1];ans=a[n][m-1];}
    else if(dp[n+m-2][n][n-1]<dp[n+m-2][n-1][n]) {maxx=dp[n+m-2][n-1][n];ans=a[n-1][m];}
    else ans=max(a[n][m-1],a[n-1][m]);
    printf("%d %d %d",maxx,maxx-ans,ans);
    return 0;
}

亟待解决的问题:如果记录第一个人该怎么写?




1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10523次
    • 积分:727
    • 等级:
    • 排名:千里之外
    • 原创:116篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条