迷宫 1

( 程序文件名: maze1. pas/c/cpp) 
【问题描述】
在最新版恶魔城游戏的最后一关有一个 n*m 的迷宫,入口坐标是左上角 (1,1),出口坐标是右下角(n,m)。迷宫中的某些小格中有面包圈,有些没有 。 为了通关,barty 和他的同伴 Bella 要吃掉尽可能多的面包圈然后同时到达出 口。
由于每一步都只可以选择向右或向下走,不能回头也不能停留,他们决定在 入口处开始分头行动,各自走不同的路径(不走相同的格子)到出口汇合。
那么我们的问题是,他们这样的策略最多能吃到多少面包圈?
【输入文件】文件名: maze1.in
第一行两个正整数 n,m,表示迷宫的行列数
第二行一个正整数 k,表示面包圈的个数。
接下来 k 行,每行两个数,表示每个面包圈的坐标。数据保证面包圈坐标不
超出迷宫,并且保证入口(1,1)和出口(n,m)处没有面包圈。
【输出文件】文件名: maze1.out
输出 3 个数,分别表示两个人能吃到最多面包圈的个数总和,以及两人各吃 到多少个面包圈,用空格分开。如果有多个最优方案,则输出字典序最小的。
【样例输入】
4 5 5
1 3
2 1
3 1
2 5
3 3
【样例输出】

5 2 3


     作为Bella没事乱YY出的迷宫系列里的一道,这题荣兴的成为了NOIP2008传纸条问题的变种。对于原来的传纸条问题,只需要按照斜线划分阶段,经典的二取方格数问题,不再赘述。 

首先明确一点,本题若要用四维动态规划写的话肯定会超时几个点的,所以要把它降维。

dp[k][i][j]表示在第k步,a在第i行,b在第j行的最优解。(若原点算第一步的话)

状态转移方程:

dp[k][i][j] = max(dp[k-1][i-1][j],dp[k-1][i-1][j-1],dp[k-1][i][j],dp[k-1][i][j-1]) + a[i][k-i+1] + a[j][k-j+1]);

那么问题的关键就是怎么保存令最小值最小的方案。用a[i][j]存储第二个人在第i行第j列的最优解,更新时令a[i][j]作第二关键字更新即可。详见代码。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
    int x=0,f=1;
    char ch;
    ch=getchar();
    while(ch<'0'||ch>'9') {if(ch=='-') f=-1; ch=getchar();}
    while(ch>='0'&&ch<='9') {x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,k;
int mp[105][105],dp[216][105][105],a[105][105];
int ans,maxx;
int main()
{
    freopen("maze1.in","r",stdin);
    freopen("maze1.out","w",stdout);
    int i,j,t;
    n=read(); m=read(); k=read();
    int x,y;
    for(i=1;i<=k;i++)
    {
        x=read(); y=read();
        ++mp[x][y];
    }
    for(t=1;t<=(n+m-2);t++)
    for(i=1;i<=min(n,t);i++)
    for(j=1;j<=min(n,t);j++)
    {
        if(i!=j)
        {
            int v=mp[i][t-i+1]+mp[j][t-j+1];
            int& f=dp[t][i][j];
            int& fa=a[i][t-i+1];
            if(f<dp[t-1][i][j]+v){f=dp[t-1][i][j]+v; fa=a[i][t-i]+mp[i][t-i+1];}
            else if(f==dp[t-1][i][j]+v) fa=max(fa,a[i][t-i]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i-1][j]+v){f=dp[t-1][i-1][j]+v; fa=a[i-1][t-i+1]+mp[i][t-i+1];}
            else if(f==dp[t-1][i-1][j]+v) fa=max(fa,a[i-1][t-i+1]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i][j-1]+v){f=dp[t-1][i][j-1]+v; fa=a[i][t-i]+mp[i][t-i+1];}
            else if(f==dp[t-1][i][j-1]+v) fa=max(fa,a[i][t-i]+mp[i][t-i+1]);
            
            if(f<dp[t-1][i-1][j-1]+v) {f=dp[t-1][i-1][j-1]+v; fa=a[i-1][t-i+1]+mp[i][t-i+1];}
            else if(f==dp[t-1][i-1][j-1]+v) fa=max(fa,a[i-1][t-i+1]+mp[i][t-i+1]);
        }
    }
    maxx=dp[n+m-2][n][n-1];
    if(dp[n+m-2][n][n-1]>dp[n+m-2][n-1][n]){maxx=dp[n+m-2][n][n-1];ans=a[n][m-1];}
    else if(dp[n+m-2][n][n-1]<dp[n+m-2][n-1][n]) {maxx=dp[n+m-2][n-1][n];ans=a[n-1][m];}
    else ans=max(a[n][m-1],a[n-1][m]);
    printf("%d %d %d",maxx,maxx-ans,ans);
    return 0;
}

亟待解决的问题:如果记录第一个人该怎么写?




生成随机二迷宫可以使用深度优先搜索算法(DFS)或广度优先搜索算法(BFS)。下面是一个使用DFS算法生成随机二迷宫的C语言实现代码: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> #define ROW 15 // 迷宫行数 #define COL 15 // 迷宫列数 int maze[ROW][COL]; // DFS算法生成迷宫 void dfs(int x, int y) { int dir[4][2] = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}}; // 右下左上四个方向 int visit[4] = {0, 1, 2, 3}; // 随机打乱方向 srand((unsigned)time(NULL)); // 以时间为种子生成随机数 for (int i = 0; i < 4; i++) { int r = rand() % 4; int tmp = visit[i]; visit[i] = visit[r]; visit[r] = tmp; } for (int i = 0; i < 4; i++) { int nx = x + dir[visit[i]][0] * 2; // 横坐标 int ny = y + dir[visit[i]][1] * 2; // 纵坐标 if (nx >= 0 && nx < ROW && ny >= 0 && ny < COL && maze[nx][ny] == 1) { maze[x + dir[visit[i]][0]][y + dir[visit[i]][1]] = 0; maze[nx][ny] = 0; dfs(nx, ny); } } } int main() { // 初始化迷宫 for (int i = 0; i < ROW; i++) { for (int j = 0; j < COL; j++) { if (i == 0 || i == ROW - 1 || j == 0 || j == COL - 1) { maze[i][j] = 1; // 边界设置为墙 } else { maze[i][j] = 1 - (rand() % 2); // 随机生成路或墙 } } } // 从起点开始生成迷宫 maze[1][0] = 0; dfs(1, 1); // 输出迷宫 for (int i = 0; i < ROW; i++) { for (int j = 0; j < COL; j++) { printf("%d ", maze[i][j]); } printf("\n"); } return 0; } ``` 在这个实现中,我们使用DFS算法随机生成迷宫。首先,我们初始化一个ROW行COL列的迷宫,将边界设置为墙,中间随机生成路或墙。然后从起点(1,0)开始生成迷宫,首先打乱四个方向的顺序,然后依次尝试向右、下、左、上四个方向生成迷宫,如果该方向上的下一个格子是未访问过的墙(即值为1),就将其设置为路(即值为0),然后以该格为起点继续递归生成迷宫。最后,输出整个迷宫
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值