上一篇博文是关于seetaface,已经用seetaface开发了一个可以商用的人脸识别登录系统了。识别速度和效果应该还不错,一秒十帧的速度就够了,当相似度阈值设置为0.7时,几乎没有出现过误识别,识别率也是不错的。
然后,seetaface只有五个特征点,在没有看到dlib之前,觉得显示左眼、右眼、鼻尖、左嘴角、右嘴角的效果,相对于只显示人脸的矩形框,效果已经很不错了。在看到dlib的人脸特征点效果后,觉得dlib的68个特征点的显示,简直酷炫太多了。好吧,那就用dlib来显示人脸特征吧。
首先,需要下载dlib,下载链接为 http://dlib.net/
如果你打开了这个链接,下载了最新的dlib,你会发现它是19.2的版本,在cmake编译时,它是不支持VS2013的,貌似支持VS2015。所以,对于我们这种使用VS2013的开发人员来说,只能够是下载dlib之前的版本了,这个版本一定要支持VS2013。好了,那么现在的问题是,下载dlib早期的版本,比如dlib18.17。博主在上面的dlib官方网站找了好久,都不知道在哪里可以下载dlib18.17的版本,真是个大坑啊,像opencv一样多好,搞个网页,早期的各个版本一目了然,随意下载。最终,博主辛苦了好久通过其他渠道下载到了18.17的版本。现在提供下载,避免需要用到的读者辛辛苦苦找资源。dlib1817下载 为了避免日后dlib升级到更高的版本而无法下载19.2版本,所以也提供dlib19.2下载
现在开始,如何使用dlib,进行人脸的特征点检测了。
第一步 :使用cmake编译下载的dlib,得到了dlib.lib文件,这是运行所需的库文件。请注意debug和release两个版本的lib,与你之后的C++编译模式对应,否则容易出错。
编译的大概步骤是:1、cmake,输入是下载的dlib文件,输出为C++工程 2、编译得到的++工程,即可得到debug和release下的lib。具体编译可参见 使用cnake编译dlib
如果有读者不想编译,想要立刻马上直接可以用起来,当然博主也提供编译后的lib文件下载。编译后的lib文件下载
第二步:新建一个VS工程。一些依赖项的设置。
1、将下载的整个dlib文件拷贝到.sln所在目录,将上一步生成的lib文件也放在这个目录。如下图所示。
2、设置C++工程的库目录,包含目录,附加依赖项。如下图所示。debug与release所依赖用到的dlib.lib文件不同
3、请提前配置好opencv相关的库目录,包含目录,附加依赖项。
4、还需要shape_predictor_68_face_landmarks.dat文件,链接:http://pan.baidu.com/s/1ge2L6Jx 密码:22j3
5、检测人脸特征点的代码。代码部分主要参考 感谢这位博主的亲身尝试和分享
#include <dlib/opencv.h>
#include <opencv2/opencv.hpp>
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing/render_face_detections.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>
using namespace dlib;
using namespace std;
int main()
{
try
{
cv::VideoCapture cap(0);
if (!cap.isOpened())
{
cerr << "Unable to connect to camera" << endl;
return 1;
}
frontal_face_detector detector = get_frontal_face_detector();
shape_predictor pose_model;
deserialize("shape_predictor_68_face_landmarks.dat") >> pose_model;
cv::namedWindow("show", 0);
while (cv::waitKey(30) != 27)
{
// Grab a frame
cv::Mat temp;
cap >> temp;
cv_image<bgr_pixel> cimg(temp);
std::vector<rectangle> faces = detector(cimg);
std::vector<full_object_detection> shapes;
for (unsigned long i = 0; i < faces.size(); ++i)
shapes.push_back(pose_model(cimg, faces[i]));
if (!shapes.empty())
{
for (int i = 0; i < 68; i++) {
circle(temp, cvPoint(shapes[0].part(i).x(), shapes[0].part(i).y()), 3, cv::Scalar(0, 0, 255), -1);
}
}
imshow("show", temp);
}
}
catch (serialization_error& e)
{
cout << "You need dlib's default face landmarking model file to run this example." << endl;
cout << "You can get it from the following URL: " << endl;
cout << " http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2" << endl;
cout << endl << e.what() << endl;
}
catch (exception& e)
{
cout << e.what() << endl;
}
}
6、最后,只要有USB摄像头,你就可以查看效果了。