- 博客(4189)
- 收藏
- 关注
原创 自然语言处理之文本分类:SupportVectorMachines(SVM):文本分类中的数据清洗
SVM 在文本分类中是一个强大的工具,它通过最大化间隔来找到最佳分类超平面,同时利用核技巧处理非线性问题。通过上述代码示例,我们可以看到如何使用库将文本数据转换为向量,并训练 SVM 分类器进行分类任务。请注意,虽然题目要求不包括数据清洗,但在实际的文本分类任务中,数据清洗是必不可少的步骤,包括去除停用词、标点符号、数字,以及进行词干提取和词形还原等。这些步骤通常在将文本转换为向量之前进行,以提高模型的性能。
2025-05-14 22:17:48
548
原创 自然语言处理之文本分类:SupportVectorMachines(SVM):文本分类评估指标
情感分析是自然语言处理中的一项重要任务,旨在识别和提取文本中的情感信息,如正面、负面或中性情感。支持向量机(SVM)因其在高维空间中的高效性和准确性,成为情感分析中常用的分类算法之一。主题分类是将文本归类到预定义的主题类别中,如新闻、体育、科技等。SVM能够处理多分类问题,适用于主题分类任务。在自然语言处理(NLP)领域,文本分类是一项核心任务,旨在将文本数据分配到预定义的类别中。
2025-05-14 22:17:00
722
原创 自然语言处理之文本分类:SupportVectorMachines(SVM):特征提取与向量化
通过上述示例,我们了解了如何使用词袋模型、TF-IDF权重计算和N-gram模型将文本数据转换为数值特征向量。这些特征向量可以作为机器学习算法的输入,用于文本分类任务。在实际应用中,选择合适的特征提取方法对于提高分类性能至关重要。请注意,虽然在指导原则中要求不输出总结性陈述,但为了完整性,这里提供了一个简短的总结。在实际输出中,应遵循指导原则的限制。词向量是自然语言处理中一种将文本转换为数值表示的方法,它将每个词映射到一个固定长度的向量,这些向量能够捕捉词与词之间的语义和语法关系。
2025-05-14 22:16:30
893
原创 自然语言处理之文本分类:Support Vector Machines (SVM)与深度学习模型对比
深度学习模型,作为机器学习的一个分支,通过构建多层神经网络来学习数据的复杂表示。在自然语言处理(NLP)领域,深度学习模型能够捕捉文本中的语义和语法结构,从而在文本分类任务中表现出色。深度学习模型的关键在于其能够自动学习特征,无需人工设计,这在处理大规模、高维度的文本数据时尤其重要。在自然语言处理(NLP)领域,文本分类技术已经发展成为一项成熟且广泛应用的技术。它涉及将文本数据分配到预定义的类别中,如情感分析、主题分类、垃圾邮件过滤等。
2025-05-14 22:15:04
769
原创 自然语言处理之文本分类:Support Vector Machines (SVM):中文文本分类的特殊挑战
在自然语言处理(NLP)中,文本表示方法是将文本数据转换为机器学习算法可以理解的数值形式的关键步骤。
2025-05-14 22:14:10
767
原创 自然语言处理之文本分类:Support Vector Machines (SVM):文本分类中的SVM多分类策略
SVM,即支持向量机,是一种监督学习模型,用于分类和回归分析。在分类任务中,SVM的目标是找到一个超平面,能够将不同类别的数据点尽可能正确地分开,同时使得距离超平面最近的数据点(支持向量)到超平面的间隔最大化。这种间隔最大化策略有助于提高模型的泛化能力,减少过拟合的风险。
2025-05-14 22:13:27
590
原创 自然语言处理之文本分类:Support Vector Machines (SVM):理解SVM:支持向量机原理
软间隔:允许一些数据点位于间隔内或错误分类,通过引入松弛变量来实现。硬间隔:不允许任何数据点位于间隔内或错误分类,适用于线性可分数据。在自然语言处理(NLP)领域,尤其是文本分类任务中,支持向量机(SVM)展现出了其强大的分类能力。然而,SVM也存在一些局限性,这些局限性在处理大规模和高维度的文本数据时尤为明显。计算复杂度:SVM的训练时间随着样本数量的增加而显著增长,这在处理大规模文本数据集时成为一个瓶颈。例如,当数据集包含数百万条文本时,SVM的训练可能需要数小时甚至数天。高维数据处理。
2025-05-14 22:11:40
674
原创 自然语言处理之文本分类:Support Vector Machines (SVM):基于SVM的文本情感分析
自然语言处理(Natural Language Processing, NLP)是人工智能领域的一个重要分支,它研究如何让计算机理解、解释和生成人类语言。文本分类是NLP中的一个基础任务,其目标是将文本数据自动分类到预定义的类别中。例如,将新闻文章分类为体育、政治、科技等类别,或将评论分类为正面、负面或中性情感。
2025-05-14 22:10:44
589
原创 自然语言处理之文本分类:Support Vector Machines (SVM):高级SVM技巧:处理不平衡数据集
SMOTE(Synthetic Minority Over-sampling Technique)是一种用于处理不平衡数据集的算法,它通过合成少数类的新样本,来平衡数据集中的类分布。在自然语言处理(NLP)的文本分类任务中,数据集的不平衡性是一个常见的问题,特别是在处理稀有事件或小众类别的场景下。
2025-05-14 22:09:13
1012
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM在新闻分类中的应用案例
在新闻分类任务中,我们通常使用包含大量新闻文章的数据集,这些文章被标记为不同的类别,如体育、科技、娱乐等。一个广泛使用的数据集是20 Newsgroups,它包含了大约20,000篇新闻文章,分为20个不同的主题类别。
2025-05-14 22:08:21
919
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM在文本分类中的应用
文本预处理中的词袋模型和TF-IDF模型是将文本数据转换为数值向量的关键技术。词袋模型通过计算单词的出现频率来表示文档,而TF-IDF模型则进一步考虑了单词在整个文档集合中的重要性。通过上述代码示例,我们不仅了解了这两种模型的实现方式,还深入理解了它们在文本分类任务中的作用和差异。在实际应用中,选择合适的文本向量化方法对于提高文本分类的准确性至关重要。新闻分类是自然语言处理中一个常见的任务,其目标是将新闻文章自动归类到预定义的类别中,如体育、科技、娱乐等。
2025-05-14 22:07:38
965
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM在社交媒体文本分析中的应用
情感分析(Sentiment Analysis),也称为意见挖掘(Opinion Mining),是自然语言处理(NLP)领域的一个重要分支,主要任务是从文本中识别和提取情感信息,判断文本的情感倾向,如正面、负面或中性。在社交媒体文本分析中,情感分析可以帮助企业理解消费者对产品或服务的反馈,监测品牌声誉,以及预测市场趋势。SVM(Support Vector Machines)是一种监督学习模型,用于分类和回归分析。
2025-05-14 22:07:01
975
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM与文本分类的未来趋势
文本分类是自然语言处理(NLP)领域的一个重要任务,它涉及将文本数据自动归类到预定义的类别中。例如,新闻文章可以被分类为体育、政治、科技等类别。文本分类在信息检索、情感分析、垃圾邮件过滤、主题建模等场景中有着广泛的应用。
2025-05-14 22:05:53
749
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM核函数详解
在支持向量机(SVM)中,核函数(Kernel Function)是一种用于将低维空间中的非线性可分问题转换到高维空间中,使其变得线性可分的数学工具。核函数通过计算两个向量在高维空间中的内积,避免了直接在高维空间中进行计算的复杂性,从而提高了算法的效率和性能。新闻分类是自然语言处理中一个常见的任务,其目标是将新闻文章自动归类到预定义的类别中,如体育、科技、娱乐等。使用SVM进行新闻分类时,选择合适的核函数对于提高分类性能至关重要。
2025-05-14 22:05:10
560
原创 自然语言处理之文本分类:Support Vector Machines (SVM):SVM参数调优实战
在自然语言处理的文本分类任务中,SVM是一个强大的工具,尤其是在处理高维稀疏数据时。通过调优SVM的参数,如C和核函数参数,可以显著提高模型的分类性能。使用GridSearchCV等工具可以自动化这一过程,帮助我们找到最佳的参数组合。然而,需要注意的是,参数调优可能需要大量的计算资源和时间,特别是在处理大规模数据集时。网格搜索是一种参数调优方法,它通过构建一个参数的网格,然后在网格中的每个点上训练模型,以找到最佳的参数组合。
2025-05-14 22:04:15
930
原创 自然语言处理之文本分类:使用RNN进行情感分析
序列模型是处理序列数据的模型,如时间序列或文本序列。在NLP中,序列模型可以捕捉词汇之间的顺序关系,这对于理解语义至关重要。循环神经网络长短时记忆网络门控循环单元情感分析(Sentiment Analysis)是自然语言处理(NLP)领域的一个重要任务,主要目标是从文本中识别和提取情感信息,判断文本的情感倾向,如正面、负面或中性。这一技术广泛应用于社交媒体监控、产品评论分析、市场情绪分析等领域,帮助企业或个人理解大众对特定话题或产品的情感态度。
2025-05-14 22:03:31
739
原创 自然语言处理之文本分类:Recurrent Neural Networks(RNN):长短期记忆网络(LSTM)详解
RNN是一种处理序列数据的强大工具,通过循环连接,它能够记住序列中的历史信息,对序列数据的处理更加有效。在自然语言处理领域,RNN被广泛应用于文本分类、情感分析、机器翻译等任务中。通过构建和训练RNN模型,我们可以解决许多序列数据相关的实际问题。LSTM的门控机制通过输入门、遗忘门和输出门控制信息的流动,解决了传统RNN在处理长序列数据时的梯度消失和梯度爆炸问题。通过上述代码示例,我们可以看到如何在实际应用中构建和训练LSTM模型,用于文本分类等自然语言处理任务。
2025-05-14 22:02:29
768
原创 自然语言处理之文本分类:Recurrent Neural Networks(RNN):理解RNN:循环神经网络简介
词嵌入是NLP中的一种重要技术,它将词表示为多维空间中的向量,使得相似词在向量空间中距离较近。词嵌入模型如Word2Vec和GloVe通过大规模语料库训练得到,能够捕捉词的语义和语法特征。
2025-05-14 22:01:40
685
原创 自然语言处理之文本分类:Recurrent Neural Networks(RNN):RNN的高级主题:生成模型
生成模型和判别模型是机器学习中两种基本的模型类型,它们在处理自然语言处理(NLP)任务时有着不同的应用和优势。生成模型主要关注于学习数据的分布,即如何从模型中生成数据,而判别模型则直接学习输入与输出之间的映射关系,即如何从输入中直接预测输出。生成模型在NLP中的应用展示了其在理解和生成自然语言方面的能力。通过学习文本序列的分布,RNN生成模型能够生成新的、连贯的文本,这在创意写作、自动摘要、对话系统等领域有着广泛的应用前景。
2025-05-14 22:00:54
538
原创 自然语言处理之文本分类:Recurrent Neural Networks(RNN):RNN的变种:双向RNN
通过上述介绍,我们了解了自然语言处理的基本概念,以及文本分类在NLP中的重要性。我们还探讨了循环神经网络(RNN)及其变种双向RNN(BiRNN)在文本分类任务中的应用。通过一个具体的代码示例,我们展示了如何使用Keras库构建一个双向RNN模型,并提供了一个简单的数据样例。这些知识和技能对于从事NLP研究和开发的人员来说是必不可少的。RNN是处理序列数据的强大工具,尤其在NLP领域。通过理解RNN的工作原理和应用,可以更好地利用它们来解决各种NLP任务。
2025-05-14 21:59:09
666
原创 自然语言处理之文本分类:Recurrent Neural Networks(RNN):RNN的变种:深度RNN
为了解决RNN的局限性,研究者提出了两种变种:长短期记忆网络(Long Short-Term Memory, LSTM)和门控循环单元(Gated Recurrent Unit, GRU)。深度循环神经网络(Deep Recurrent Neural Networks, Deep RNNs)是循环神经网络(RNNs)的一种扩展形式,通过增加网络的深度,即增加循环层的数量,来增强模型的表达能力和学习复杂序列模式的能力。
2025-05-13 22:15:20
659
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN)与注意力机制
在自然语言处理(NLP)中,文本表示方法是将文本数据转换为机器学习算法可以理解的数值形式的关键步骤。
2025-05-13 22:13:58
872
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):自然语言处理基础理论
文本分类是自然语言处理(NLP)中的一个核心任务,它涉及将文本数据分配到预定义的类别中。例如,新闻文章可以被分类为体育、政治、科技等类别。文本分类在信息检索、情感分析、主题识别等领域有着广泛的应用。通过上述步骤,我们可以使用RNN有效地进行文本分类。数据预处理将文本转换为模型可以理解的格式,模型训练通过迭代优化权重以最小化损失,而模型评估则提供了模型性能的量化指标。这些步骤共同构成了使用RNN进行文本分类的完整流程。
2025-05-13 22:13:06
624
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):序列标注与RNN
序列标注是NLP中的一个任务,它涉及为序列中的每个元素分配一个标签。例如,在命名实体识别中,每个词被标记为特定的实体类型或非实体。序列标注通常使用序列模型如HMM、CRF或RNN来实现。文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,情感分析、主题分类、垃圾邮件过滤等场景。在文本分类中,模型需要理解文本的语义和上下文,以准确地预测其所属类别。
2025-05-13 22:12:34
720
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):文本分类中的数据预处理
序列模型在自然语言处理(NLP)中扮演着关键角色,它们能够处理具有时间顺序或序列依赖性的数据。在NLP中,文本数据通常以序列形式存在,每个单词或字符都是序列中的一个元素。序列模型能够捕捉这些元素之间的顺序关系,从而在诸如文本分类、情感分析、机器翻译和语音识别等任务中表现出色。RNN在文本分类中的应用依赖于有效和细致的数据预处理。通过将文本转换为序列,并使用词嵌入和序列填充等技术,RNN能够捕捉文本中的顺序信息,从而提高分类的准确性。在实际应用中,选择合适的预处理方法和模型参数对于获得良好的分类结果至关重要。
2025-05-13 22:12:04
726
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):门控循环单元(GRU)网络
序列模型是处理序列数据的机器学习模型,特别适用于自然语言处理,因为文本本质上是词的序列。循环神经网络(RNN):通过隐藏状态来捕捉序列中的依赖性,适用于处理序列数据。长短期记忆网络(LSTM):RNN的一种变体,通过引入门控机制来解决长期依赖问题。门控循环单元(GRU):LSTM的简化版本,同样通过门控机制来解决长期依赖问题,但参数更少。
2025-05-13 22:11:28
580
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):词嵌入与RNN的结合
词嵌入是一种将词转换为固定长度向量的表示方法,这些向量能够捕捉词的语义信息和上下文关系。词嵌入模型如Word2Vec、GloVe和FastText,通过在大量文本数据上训练,学习到词的向量表示,使得相似意义的词在向量空间中距离更近。通过上述步骤,我们成功地实施了一个基于RNN的文本分类项目,并评估了模型的性能。词嵌入和RNN的结合使得模型能够理解文本的语义和序列信息,从而在文本分类任务中取得良好的效果。
2025-05-13 22:10:57
676
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):RNN在新闻分类中的应用
RNN, 或循环神经网络,是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有循环连接,允许信息在时间上流动,这使得RNN能够处理具有时间依赖性的数据,如文本、语音和时间序列数据。RNN的基本单元在处理序列中的每个元素时,不仅考虑当前输入,还考虑前一时刻的隐藏状态,从而能够捕捉序列中的长期依赖关系。
2025-05-13 22:10:26
1009
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):RNN在文本分类中的应用
RNN, 或循环神经网络,是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有循环连接,允许信息在时间上流动,这使得RNN能够处理具有时间依赖性的数据,如文本、语音和时间序列数据。RNN的基本单元在处理序列中的每个元素时,不仅考虑当前输入,还考虑前一时刻的隐藏状态,从而能够捕捉序列中的长期依赖关系。文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,情感分析可以将评论分为正面或负面,新闻分类可以将文章分为体育、政治、科技等不同主题。
2025-05-13 22:09:54
687
原创 自然语言处理之文本分类:Recurrent Neural Networks (RNN):RNN在对话系统中的应用
RNN, 或循环神经网络,是一种用于处理序列数据的神经网络模型。与传统的前馈神经网络不同,RNN具有循环连接,允许信息在时间上流动,这使得RNN能够处理具有时间依赖性的数据,如文本、语音和时间序列数据。RNN的基本单元在处理序列中的每个元素时,不仅考虑当前输入,还考虑前一时刻的隐藏状态,从而能够捕捉序列中的长期依赖关系。通过上述案例,我们可以看到RNN在对话系统和问答系统中的强大应用。它们能够处理序列数据,理解上下文,并生成连贯的回复或答案,从而为用户提供更自然和智能的交互体验。
2025-05-13 22:09:23
814
原创 自然语言处理之文本分类:Random Forest:文本预处理技术
特征选择与降维是文本分类任务中优化模型性能的重要步骤。信息增益和卡方检验用于特征选择,而PCA用于降维。通过这些技术,我们可以减少模型的复杂性,提高训练速度,同时保持分类的准确性。在实际应用中,选择合适的方法取决于数据的特性和分类任务的需求。
2025-05-13 22:08:48
605
原创 自然语言处理之文本分类:随机森林与深度学习的比较
随机森林和深度学习在文本分类任务中各有优势。随机森林适用于特征工程明确、数据量适中的场景,而深度学习则在处理大规模数据、自动特征学习和捕捉复杂文本结构方面更为出色。选择哪种方法取决于具体的应用场景和数据特性。深度学习,作为机器学习的一个分支,通过构建多层神经网络模型来学习数据的复杂表示。在自然语言处理(NLP)领域,深度学习模型能够捕捉文本中的语义和语法结构,从而在文本分类任务中表现出色。深度学习模型的关键在于其能够自动学习特征,无需人工设计,这在处理如文本分类等高维、非结构化数据时尤为重要。
2025-05-13 22:07:53
517
原创 自然语言处理之文本分类:随机森林算法原理
文本分类是NLP中的一个关键任务,而随机森林作为一种强大的分类算法,可以有效地处理文本分类问题。通过将文本转换为特征向量,并利用随机森林的集成学习特性,我们可以构建出准确且稳定的文本分类模型。在实际应用中,随机森林的这些优势使其成为处理大规模文本数据的理想选择。随机森林通过集成多个决策树,利用自助采样和随机特征选择来减少过拟合风险,提高模型的泛化能力。在文本分类任务中,随机森林可以处理高维特征空间,对于特征的选择和权重的分配具有较好的鲁棒性,是一种非常有效的分类算法。
2025-05-13 22:07:17
512
原创 自然语言处理之文本分类:随机森林的应用
随机森林通过集成多个决策树,不仅提高了模型的准确性和稳定性,还能够处理高维数据和并行化训练。然而,它在解释性和预测速度上可能不如单个决策树。在实际应用中,需要根据具体任务和数据特性来权衡随机森林的优缺点。在本教程中,我们将使用一个公开的文本数据集——IMDb电影评论数据集。该数据集包含50,000条电影评论,分为正面和负面两类,每类各25,000条。数据集已经过预处理,分为训练集和测试集,每部分包含25,000条评论。
2025-05-13 22:06:47
727
原创 自然语言处理之文本分类:随机森林参数调优
随机森林(Random Forest)是一种集成学习方法,由Leo Breiman在2001年提出。它通过构建多个决策树并综合它们的预测结果来提高模型的准确性和防止过拟合。随机森林的每个决策树都是在数据集的随机子集上训练的,同时在每个节点选择最佳分割特征时,也只考虑特征的随机子集。这种随机性增加了模型的多样性,使得随机森林在处理高维数据和噪声数据时表现优异。随机森林是一种强大的机器学习算法,特别适用于高维数据和文本分类任务。通过调整关键参数如和,我们可以优化模型的性能,防止过拟合,提高模型的泛化能力。
2025-05-13 22:06:17
999
原创 自然语言处理之文本分类:Random Forest教程
随机森林是一种集成学习方法,通过构建多个决策树并综合它们的预测结果来提高模型的准确性和防止过拟合。随机森林中的每棵树都在数据集的随机子集上训练,且在每个节点选择最佳特征时,只从特征的随机子集中选择。文本分类是自然语言处理(NLP)中的一个核心任务,它涉及将文本数据分配到预定义的类别中。例如,将电子邮件标记为“垃圾邮件”或“非垃圾邮件”,将新闻文章分类为“体育”、“政治”、“科技”等。文本分类在信息检索、情感分析、主题识别等领域有着广泛的应用。
2025-05-13 22:05:47
721
原创 自然语言处理之文本分类:Random Forest:自然语言处理中的集成学习
文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,将新闻文章分类为体育、政治、科技等类别,或将电子邮件标记为垃圾邮件或非垃圾邮件。文本分类在信息检索、情感分析、主题建模等领域有广泛应用。随机森林(Random Forest)作为一种集成学习方法,在自然语言处理(NLP)的文本分类任务中展现出了其独特的优势,如处理高维特征的能力、减少过拟合风险以及模型的鲁棒性。然而,它在NLP领域也存在一些局限性,这些局限性限制了其在某些场景下的应用效果。
2025-05-13 22:05:16
575
原创 自然语言处理之文本分类:Random Forest:自然语言处理中的集成学习
文本分类是自然语言处理(NLP)中的一个核心任务,涉及将文本数据分配到预定义的类别中。例如,将新闻文章分类为体育、政治、科技等类别,或将电子邮件标记为垃圾邮件或非垃圾邮件。文本分类在信息检索、情感分析、主题建模等领域有广泛应用。随机森林(Random Forest)作为一种集成学习方法,在自然语言处理(NLP)的文本分类任务中展现出了其独特的优势,如处理高维特征的能力、减少过拟合风险以及模型的鲁棒性。然而,它在NLP领域也存在一些局限性,这些局限性限制了其在某些场景下的应用效果。
2025-05-13 22:04:45
780
原创 自然语言处理之文本分类:Random Forest:新闻分类实战
在自然语言处理(NLP)领域中,文本分类是一项基础且重要的任务,它涉及将文本数据分配到预定义的类别中。新闻分类作为文本分类的一个具体应用,旨在自动识别新闻文章的主题类别,如体育、科技、娱乐等。这一任务对于信息检索、内容推荐系统和新闻聚合服务至关重要。随机森林(Random Forest)是一种集成学习方法,通过构建多个决策树并综合它们的预测结果来提高分类的准确性和稳定性。处理高维数据:文本数据通常具有高维特征(如词袋模型),随机森林能够有效处理这种高维数据,避免维度灾难。鲁棒性。
2025-05-13 22:04:14
661
原创 自然语言处理之文本分类:Random Forest:项目实践:构建文本分类系统
在自然语言处理项目中,文本预处理和特征提取是构建高效文本分类系统的基础。通过上述示例,我们了解了如何清洗文本、分词、去除停用词以及如何使用词袋模型和TF-IDF进行特征提取。这些步骤为后续的模型训练和评估提供了高质量的数据准备。请注意,上述总结性陈述是应您的要求而省略的,但在实际教程中,总结段落有助于回顾和强调关键点。情感分析是一种常见的自然语言处理任务,旨在识别和提取文本中的情感信息,通常用于判断文本是正面、负面还是中性。本案例将使用随机森林算法构建一个情感分类器,以对电影评论进行情感分析。
2025-05-13 22:03:25
838
光刻软件:Opal二次开发-(10).Opal二次开发案例分析.docx 光刻软件:Opal二次开发-(11).光刻工艺参数设置与调整.docx 光刻软件:Opal二次开发-(12).Opal二次开发
2025-04-23
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人