题意:
给出整数t1,t2,x1,x2,t0,和公式,(1 ≤ t1 ≤ t0 ≤ t2 ≤ 106, 1 ≤ x1, x2 ≤ 106).求满足(0 ≤ y1 ≤ x1, 0 ≤ y2 ≤ x2)此条件的y1,y2使得t最接近t0,但要保证t>t0.输出y1,y2.多种方案时输出最大的y1,y2.
题解:不4个特判必WA。不过这4个特判不太容易想全。
case 1:t1==t0 && t2!=t0 => y1=x1,y2=0
case 2:t2==t0 && t1!=t0 => y1=0,y2=x2
case 3:t1==t2 =>y1=x1,y2=x2
做法:
枚举y1,然后t2可以解出来。在选最小的,不过也有坑!见程序吧
case 4:非常难想到的是,当y1==0,方程解出y2=0此时显然不对,所以此种情况仍需处理。
#include<iostream>
#include<cstring>
using namespace std;
long long t1,t2,x1,x2,t0,f1,f2;
long long cal(long long t1,long long y1,long long t2,long long y2)
{
return t1*y1+t2*y2-t0*(y1+y2);
}
void solve(long long y1,long long y2)
{
if(y2<0)y2=0;else if(y2>x2)y2=x2;//溢出
if(y1==0 && y2==0)return;//WA
if(t1*y1+t2*y2<t0*(y1+y2))return;//不满足t>=t0的条件
if(cal(t1,y1,t2,y2)*(f1+f2)<cal(t1,f1,t2,f2)*(y1+y2)||(f1<0 && f2<0))
{
f1=y1;f2=y2;
}
else
if(cal(t1,y1,t2,y2)*(f1+f2)==cal(t1,f1,t2,f2)*(y1+y2)&&y1+y2>f1+f2)
{
f1=y1;f2=y2;
}
}
int main()
{
long long y2;
while(cin>>t1>>t2>>x1>>x2>>t0)
{
f1=-1,f2=-1;
if(t1==t2)//case
{
f1=x1;f2=x2;
}
else if(t1==t0)//case
{
f1=x1;f2=0;
}
else if(t2==t0)//case
{
f1=0;f2=x2;
}
else
for(long long y1=1;y1<=x1;y1++)
{
if(t0>t2)
{
y2=(t1*y1-t0*y1)/(t0-t2);
solve(y1,y2);
}
else
if(t0<t2)
{
y2=(t1*y1-t0*y1)%(t0-t2)==0?(t1*y1-t0*y1)/(t0-t2):1+(t1*y1-t0*y1)/(t0-t2);
solve(y1,y2);
}
}
//y1=0 case 4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
if(t2>=t0)solve(0,x2);
cout<<f1<<" "<<f2<<endl;
}
return 0;
}