hdu4415

/*
分析:
    贪心。
    1、所有人都没有菜刀、无法砍别人。对于这种情况,直接根据cost排序,
来尽量多的杀人,得到第一组ans;
    2、存在有菜刀的人:
    如果猪角的武器的耐久、不足以使他杀死“有菜刀、且cost最小”的人,那
么返回“1、”,否则、砍死这个人、进入下面的步骤:
(1)所有的人的菜刀可以杀死的人的总和sum+1>=n(因为至少一个人必须是
猪角用自己的武器杀死的),那么最多可以杀n个人;
    (2)上述sum+1<n,那么去除猪角已经砍死的那个人,然后根据cost排序,直
接干掉cost最大的sum个人,然后用猪角自己的武器、从还活着的人中、从cost
从小到大、尽量多杀人;
    (1)和(2)的最优为第二组ans;
    
    比较第一、二组ans,最优既为所求。
    至于2.(2),为什么可以直接先干掉cost最大的sum个人呢?根据菜刀可杀人
总数守恒、我们总可以把所有的菜刀都完美利用起来,可以拿张纸画下,所以、
如何完美的利用菜刀是解决此题的关键。。。

                                                                 2013-06-27
*/






#include"iostream"
#include"cstdio"
#include"queue"
#include"cstring"
#include"algorithm"
using namespace std;
const int N=100005;

int n,m,cnt1,cnt2;
int ans1,ans2,ret1,ret2,zz[N];
struct node{
	int cost,val;
}E[N];
int cmp(node n1,node n2){
	return n1.cost<n2.cost;
}

void solve1()
{
	int i;
	ans1=0;
	ret1=m;
	for(i=0;i<n;i++)
	{
		if(E[i].val)	continue;
		if(ret1>=E[i].cost)	{ans1++;ret1-=E[i].cost;}
		else	break;
	}
}
void solve2()
{
	int i;
	ans2=0;
	ret2=m;
	for(i=0;i<n;i++)	if(E[i].val)	break;
	if(i>=n)			return ;
	if(ret2<E[i].cost)	return ;

	int flag=i;
	int sum=0;
	for(i=0;i<n;i++)	sum+=E[i].val;
	if(sum+1>=n)	{ans2=n;ret2=m-E[flag].cost;return ;}

	ans2=sum+1;
	ret2-=E[flag].cost;
	memset(zz,0,sizeof(zz));
	zz[flag]=1;
	i=n-1;
	while(sum>0)
	{
		if(!zz[i])	{zz[i]=1;sum--;}
		i--;
	}
	for(i=0;i<n;i++)
	{
		if(zz[i])	continue;
		if(ret2<E[i].cost)	break;
		ans2++;
		ret2-=E[i].cost;
	}
}
int main()
{
	int T,Case;
	int i;
	cin>>T;
	for(Case=1;Case<=T;Case++)
	{
		scanf("%d%d",&n,&m);
		for(i=0;i<n;i++)	scanf("%d%d",&E[i].cost,&E[i].val);

		sort(E,E+n,cmp);
		solve1();
		solve2();
		if(ans1>ans2 || (ans1==ans2 && ret1>ret2))
			printf("Case %d: %d %d\n",Case,ans1,m-ret1);
		else	printf("Case %d: %d %d\n",Case,ans2,m-ret2);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值