<think>嗯,我现在要解决的是HDU 2049这道题,题目是关于“考新郎”的问题。让我仔细读一遍题目,确保理解正确。题目大意是说,有N对新婚夫妇,其中有M个新郎找错了新娘,问这种情况有多少种可能的组合。输入的第一行是测试实例的个数C,接下来C行每行给出N和M。输出每个实例的可能数目。
首先,我得明确问题的要求。题目需要计算的是在N个新郎中选出M个,这M个都找错了新娘的情况数目。这显然涉及到组合数学中的错位排列(也称为错排)问题。因为对于选中的M个新郎,每个人都必须不在自己的位置上,而剩下的N-M个新郎则必须正确找到新娘,所以那些未被选中的新郎的位置是正确的。
那问题可以分解为两个步骤:
1. 从N个新郎中选出M个,这M个人需要进行错排。
2. 剩下的N-M个新郎必须正确,即他们的排列方式是唯一的,也就是只有一种可能。
所以,总的情况数应该是组合数C(N, M)乘以M个元素的错排数D(M)。
接下来,我需要确定如何计算组合数和错排数。
组合数C(n, k)的公式是n!/(k!*(n−k)!)。这个部分应该没有问题,但需要注意n和k的范围。题目中的N和M最大是20,所以阶乘可能会比较大,但用长整型应该可以处理。
然后是错排数D(m)。错排数的递推公式我记得是D(n) = (n-1)*(D(n-1) + D(n-2)),初始条件是D(1)=0,D(2)=1。或者也可以用通项公式,比如D(n) = n! * (1 - 1/1! + 1/2! - 1/3! + ... + (-1)^n /n!)。不过对于编程来说,可能递推的方式更方便,尤其是当n比较小时,预处理错排数的数组会更高效。
那现在,我需要先计算组合数C(N,M),然后乘以错排数D(M)。然后将这两个部分相乘得到结果。
比如,看样例输入:
第一个测试用例是2 2。即N=2,M=2。这时候,组合数是C(2,2)=1,错排数D(2)=1,所以结果是1*1=1。和样例输出一致。
第二个测试用例是3 2。N=3,M=2。组合数是C(3,2)=3。错排数D(2)=1,所以结果是3*1=3,符合样例输出。
这样,思路应该是正确的。现在需要思考如何实现这两个部分。
对于组合数的计算,由于n的范围是到20,可以考虑预先计算阶乘,然后用阶乘的数组来计算组合数。比如,预先计算fact[0]到fact[20],其中fact[i]是i!的值。然后C(n,m)=fact[n]/(fact[m]*fact[n−m])。不过要注意数据类型的溢出问题,比如20!会非常大,用long long类型来存储可能比较安全。
对于错排数的计算,同样可以预先计算D[1]到D[20]。因为当M<=N<=20,所以最大的错排数是D(20)。递推方式的话:
初始化D[1]=0,D[2]=1。然后对于i>=3,D[i]=(i-1)*(D[i-1]+D[i-2])。
比如,D[3]=(3-1)*(D[2]+D[1])=2*(1+0)=2,这正确。因为三个元素的错排有两种情况。例如,元素1、2、3的正确排列是1-2-3,错排的话,可能的排列是2-3-1和3-1-2,共两种。
因此,正确的错排数可以通过递推得到。
现在,具体的实现步骤可能如下:
1. 预先生成阶乘数组fact,从0到20。
2. 预生成错排数数组D,从1到20。
3. 对于每个测试用例,输入N和M,计算C(N,M)*D[M]的值。
但需要注意的是,当M=1的时候,D[1]=0,所以这时候结果应该是C(N,1)*0=0。例如,当N=3,M=1时,选一个新郎让他错排,但错排数D[1]=0,所以总共有0种可能。但根据题目中的输入条件,M>1的情况是否存在?题目中的输入条件给出的是1<M<=N<=20。所以M最小是2吗?原题中输入的描述是“1<M<=N<=20”,所以M的取值是大于1,小于等于N的。那可能题目中的M的取值范围是M>=2?比如看样例输入中的第二个测试用例是3 2,M是2。所以错排数D[2]=1,所以没有问题。那当M=0或者M=1的时候,可能不在输入范围内,所以程序不需要处理这些情况。因此,在预生成错排数组时,D[1]虽然存在,但实际输入中不会有M=1的情况。
那现在,如何处理阶乘的计算?比如,阶乘数组的初始化:
fact[0] = 1;
fact[1] = 1;
fact[2] = 2;
...
直到fact[20] = 20!。同样,可以用循环计算。
对于错排数组:
d[1] = 0;
d[2] = 1;
for i from 3 to 20:
d[i] = (i-1) * (d[i-1] + d[i-2])
这些都可以预先计算好。
因此,在程序中,可以预先计算这两个数组,然后对于每个测试用例,直接计算组合数C(n,m) = fact[n]/(fact[m]*fact[n-m]),然后乘以d[m],得到结果。
现在需要考虑的是,当计算组合数的时候,阶乘的数值是否溢出。比如,20!的值是2432902008176640000,这在C++中的long long类型是可以存储的,因为long long的范围是-9e18到9e18,而20!大约是2.4e18,所以没问题。而用Java的话,BigInteger可能会更安全,但题目中的N不超过20,所以用长整型应该足够。
因此,程序的大致流程是:
预处理fact数组和d数组。然后,对于每个测试用例,输入n和m,计算C(n,m)*d[m],输出结果。
现在,测试一下样例:
比如第二个测试用例是3 2:
fact[3] =6, fact[2]=2, fact[1]=1。C(3,2)=6/(2*1)=3。d[2]=1。3*1=3,正确。
另一个例子,比如n=4,m=2:
组合数是C(4,2)=6。d[2]=1。结果6*1=6。那是否合理?选2个人出来错排,他们的错排数是1,所以总共有6种可能?
比如,假设这四个新郎是A、B、C、D,正确的新娘分别是a、b、c、d。选中的两个人比如A和B。他们必须都找错,那么可能的交换方式是A找b,B找a。这只有一种方式。所以对于选中的两个人来说,错排数是1。所以总共有C(4,2)*1=6种情况。确实如此。
那假设另一个例子,比如n=3,m=3。此时,组合数是1,错排数是D(3)=2。所以总共有2种可能。这与实际3个元素的错排数目相符。
综上,思路是正确的。
现在需要考虑的是如何编写代码,特别是预处理数组。
例如,在C++中,可以这样写:
预处理阶乘数组:
long long fact[21];
fact[0] = 1;
for(int i=1; i<=20; i++)
fact[i] = fact[i-1] * i;
错排数组:
long long d[21];
d[1] = 0;
d[2] = 1;
for(int i=3; i<=20; i++)
d[i] = (i-1)*(d[i-1]+d[i-2]);
然后,对于每个测试用例,输入n和m:
计算组合数C(n,m) = fact[n]/(fact[m] * fact[n - m]);
然后结果就是C(n,m) * d[m]。
这样就能得到正确的结果。
需要注意的是,在C++中,当处理除法的时候,必须确保fact[m] * fact[n-m]的乘积能被fact[n]整除。由于组合数一定是整数,所以这里不会有问题。
例如,当n=3,m=2时:
fact[3]=6, fact[2]=2, fact[1]=1. 6/(2*1)=3.
所以,这样的计算是正确的。
因此,这样的代码是正确的,应该能通过所有测试用例。
现在,再检查一下可能出现的边界情况。例如,当n=m的时候,即所有选中的新郎都错排。此时,结果应该是C(n,n)*d(n) =1*d(n)。比如,当n=2时,d(2)=1,结果正确。当n=3时,d(3)=2,结果2,正确。
另外,当m=0的情况?但题目中的输入条件m>1,所以不需要考虑。例如,输入中的m的最小值是2?
根据题目描述,输入中的M的条件是1<M<=N<=20,所以M的最小可能值是2?
例如,第一个测试用例是2 2,符合条件。那如果输入中有M=2的情况,那么没问题。
所以,现在代码的逻辑是正确的。
综上所述,解决这个问题的步骤是:
1. 计算组合数C(n, m)。
2. 计算错排数D(m)。
3. 将两者相乘,得到答案。
因此,程序实现的关键是预处理这两个数组,并且正确计算它们的乘积。</think>要解决HDU 2049“考新郎”问题,需分两步处理:**组合选择**和**错位排列**。以下是详细思路:
---
### **问题分析**
题目要求计算在N个新郎中选出M个并全部找错新娘的可能情况数。解决思路如下:
1. **组合选择**:从N个新郎中选出M个,组合数为$C(N, M)$。
2. **错位排列**:M个新郎全找错的排列数为错排数$D(M)$。
3. **总可能数**:将两者相乘,即$C(N, M) \times D(M)$。
---
### **关键公式与预处理**
1. **组合数公式**
组合数$C(n, m) = \frac{n!}{m! \cdot (n-m)!}$。
预处理阶乘数组`fact[0..20]`,直接查表计算。
2. **错排数递推公式**
错排数满足递推关系:
$$D(n) = (n-1) \cdot \left(D(n-1) + D(n-2)\right)$$
初始条件:
$$D(1) = 0,\quad D(2) = 1$$
预处理错排数组`d[1..20]`。
---
### **算法实现步骤**
1. **预处理阶乘数组**
```cpp
long long fact[21] = {1}; // fact[0] = 1
for (int i = 1; i <= 20; i++)
fact[i] = fact[i-1] * i;
```
2. **预处理错排数组**
```cpp
long long d[21] = {0, 0, 1}; // d[1]=0, d[2]=1
for (int i = 3; i <= 20; i++)
d[i] = (i-1) * (d[i-1] + d[i-2]);
```
3. **计算每个测试用例的结果**
输入N和M后,直接查表计算:
$$结果 = C(N, M) \times D(M) = \frac{\text{fact}[N]}{\text{fact}[M] \cdot \text{fact}[N-M]} \times \text{d}[M]$$
---
### **示例验证**
以样例输入`3 2`为例:
1. 组合数$C(3,2) = \frac{3!}{2! \cdot 1!} = 3$。
2. 错排数$D(2) = 1$。
3. 总可能数$3 \times 1 = 3$,与样例输出一致。
---
### **代码实现(C++)**
```cpp
#include <iostream>
using namespace std;
int main() {
// 预处理阶乘和错排数
long long fact[21] = {1};
for (int i = 1; i <= 20; i++)
fact[i] = fact[i-1] * i;
long long d[21] = {0, 0, 1}; // d[0]未用,d[1]=0,d[2]=1
for (int i = 3; i <= 20; i++)
d[i] = (i-1) * (d[i-1] + d[i-2]);
int c;
cin >> c;
while (c--) {
int n, m;
cin >> n >> m;
// 计算组合数C(n, m) = fact[n] / (fact[m] * fact[n-m])
long long cnm = fact[n] / (fact[m] * fact[n-m]);
// 结果为组合数乘以错排数
cout << cnm * d[m] << endl;
}
return 0;
}
```
---
### **总结**
通过预处理阶乘和错排数,可快速计算每个测试用例的结果。时间复杂度为$O(1)$(预处理后查表),适用于题目中的输入范围。