有源汇有上下界最小流。我们已经可以求出有源汇有上下界可行流一个了,但是他不一定是最小的。怎么求最小的呢?我们知道最后新加的边s->t的流量就是可行流的大小,所以我们就是要最小化s->t的流量。怎么做呢?我们建出超级源汇的求可行流的图,先不加s->t这条边,跑一遍S到T的最大流,然后加上s->t这条边,在残余网络上再跑一遍S到T的最大流,答案就是s->t这条边的流量。(为什么呢?因为我们先不加s->t这条边,让他尽量不流这条边,最后再加上这条边,最小化经过这条边的流量)
tips:这题必须加当前弧优化才能过。。。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define ll long long
#define inf 0x3f3f3f3f
#define N 50010
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x*f;
}
int n,m,s,t,T=50005,h[N],num=1,lev[N],tot=0,ans=0,in[N],cur[N];
struct edge{
int to,next,val;
}data[360000];
inline void add(int x,int y,int val){
data[++num].to=y;data[num].next=h[x];h[x]=num;data[num].val=val;
data[++num].to=x;data[num].next=h[y];h[y]=num;data[num].val=0;
}
inline bool bfs(){
queue<int>q;memset(lev,0,sizeof(lev));
q.push(0);lev[0]=1;
while(!q.empty()){
int x=q.front();q.pop();
for(int i=h[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]||!data[i].val) continue;
lev[y]=lev[x]+1;q.push(y);
}
}return lev[T];
}
inline int dinic(int x,int low){
if(x==T) return low;int tmp=low;
for(int &i=cur[x];i;i=data[i].next){
int y=data[i].to;if(lev[y]!=lev[x]+1||!data[i].val) continue;
int res=dinic(y,min(tmp,data[i].val));
if(!res) lev[y]=0;else tmp-=res,data[i].val-=res,data[i^1].val+=res;
if(!tmp) return low;
}return low-tmp;
}
int main(){
// freopen("7.in","r",stdin);
n=read();m=read();s=read();t=read();
while(m--){
int x=read(),y=read(),lo=read(),up=read();
add(x,y,up-lo);in[y]+=lo;in[x]-=lo;
}for(int i=1;i<=n;++i){
if(in[i]>0) add(0,i,in[i]),tot+=in[i];
else if(in[i]<0) add(i,T,-in[i]);
}while(bfs()){memcpy(cur,h,sizeof(cur));ans+=dinic(0,inf);}
add(t,s,inf);while(bfs()){memcpy(cur,h,sizeof(cur));ans+=dinic(0,inf);}
if(ans!=tot) puts("please go home to sleep");
else printf("%d\n",data[num].val);
return 0;
}