sgu 176 Flow construction (有汇源有上下界的最小流)

sgu 176  Flow construction 

链接:http://acm.sgu.ru/problem.php?contest=0&problem=176
题意:有一个加工厂,里面有n台机器,起点为1终点为n。中间的生产环节有货物限制,输入m个环节。每个环节有u,v,z,c四个数字。u表示起始机器,v表示终止机器,如果c为1,那么这条边的流量必须为z。如果c为0,那么流量在[0, z]之间。保证没有自环,没有重边,只有1号机器能够生产货物,n号机器消耗货物,其他机器不能积累货物。问满足条件的情况下,1号机器最少要生产多少货物。
思路: 有源汇有上下界的最小流 1. 增设一个超级源点,一个超级汇点,以同样的方式将原网络转化为没有流量下界限制的新网络。 2. 不连接原先网络的源汇点,并以超级源汇点为起点,终点做一次最大流maxflow1。 3. 此时从汇点向源点连接一条流量为INF的边,再以超级源汇点做一次网络流maxflow2。 4. 如果从源点出发的流均为满流,则有最小流,最小流的值为从汇点流向源点的流量。 * 在判断是否为满流时,条件为 maxflow1 + maxflow2 = 超级源点流出的流量 * 可以理解为第一遍做网络流时并无T->S的边,所以S->T的流量在第一遍时都已尽力往其他边流了. 于是加上T->S这条边后,都是些剩余的流不到其他边的流量. 从而达到尽可能减少T->S这边上的流量的效果,即减小了最终答案.


代码:

/*
ID: wuqi9395@126.com
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1 << 30)
#define LINF (1LL << 60)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
#define mkp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
const int maxn = 1000;
const int maxm = 100000;
struct node {
    int v;    // vertex
    int cap;    // capacity
    int flow;   // current flow in this arc
    int nxt;
} e[maxm * 2];
int g[maxn], cnt;
int st, ed, n;
int S, D;
int N, M;
int tot[maxn], low[maxm], id[maxm];
void add(int u, int v, int c, int k) {
    e[++cnt].v = v;
    e[cnt].cap = c;
    e[cnt].flow = 0;
    e[cnt].nxt = g[u];
    g[u] = cnt;
    id[k] = cnt;

    e[++cnt].v = u;
    e[cnt].cap = 0;
    e[cnt].flow = 0;
    e[cnt].nxt = g[v];
    g[v] = cnt;
    id[0] = 0;
}

void init() {
    memset(g, 0, sizeof(g));
    cnt = 1;
    S = 1, D = N, st = N + 1, ed = N + 2;
    int u, v, z, c;
    for (int i = 1; i <= M; i++) {
        scanf("%d%d%d%d", &u, &v, &z, &c);
        if (c == 0) {
            add(u, v, z, i);
            low[i] = 0;
        } else {
            low[i] = z;
            tot[u] -= z;
            tot[v] += z;
        }
    }
    n = N + 4;
}
int dist[maxn], numbs[maxn], q[maxn];
void rev_bfs() {
    int font = 0, rear = 1;
    for (int i = 0; i <= n; i++) { //n为总点数
        dist[i] = maxn;
        numbs[i] = 0;
    }
    q[font] = ed;
    dist[ed] = 0;
    numbs[0] = 1;
    while(font != rear) {
        int u = q[font++];
        for (int i = g[u]; i; i = e[i].nxt) {
            if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
            dist[e[i].v] = dist[u] + 1;
            ++numbs[dist[e[i].v]];
            q[rear++] = e[i].v;
        }
    }
}
int maxflow() {
    rev_bfs();
    int u, totalflow = 0;
    int curg[maxn], revpath[maxn];
    for(int i = 0; i <= n; ++i) curg[i] = g[i];
    u = st;
    while(dist[st] < n) {
        if(u == ed) {   // find an augmenting path
            int augflow = INF;
            for(int i = st; i != ed; i = e[curg[i]].v)
                augflow = min(augflow, e[curg[i]].cap);
            for(int i = st; i != ed; i = e[curg[i]].v) {
                e[curg[i]].cap -= augflow;
                e[curg[i] ^ 1].cap += augflow;
                e[curg[i]].flow += augflow;
                e[curg[i] ^ 1].flow -= augflow;
            }
            totalflow += augflow;
            u = st;
        }
        int i;
        for(i = curg[u]; i; i = e[i].nxt)
            if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
        if(i) {   // find an admissible arc, then Advance
            curg[u] = i;
            revpath[e[i].v] = i ^ 1;
            u = e[i].v;
        } else {    // no admissible arc, then relabel this vertex
            if(0 == (--numbs[dist[u]])) break;    // GAP cut, Important!
            curg[u] = g[u];
            int mindist = n;
            for(int j = g[u]; j; j = e[j].nxt)
                if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]);
            dist[u] = mindist + 1;
            ++numbs[dist[u]];
            if(u != st)
                u = e[revpath[u]].v;    // Backtrack
        }
    }
    return totalflow;
}
int lowbound_minflow() {
    long long  sum = 0;
    for (int i = 1; i <= N; i++) {
        if (tot[i] > 0) add(st, i, tot[i], 0), sum += tot[i];
        if (tot[i] < 0) add(i, ed, -tot[i], 0);
    }
    int dd = maxflow();
    add(D, S, INF, M + 1);
    dd += maxflow();
    if (dd != sum) return -1;
    return e[id[M + 1]].flow;
}
int main () {
    scanf("%d%d", &N, &M);
    init();
    int mn = lowbound_minflow();
    if (mn == -1) puts("Impossible");
    else {
        printf("%d\n", mn);
        for (int i = 1; i < M; i++) {
            if (low[i] == 0) printf("%d ", e[id[i]].flow);
            else printf("%d ", low[i]);
        }
        if (low[M] == 0) printf("%d\n", e[id[M]].flow);
        else printf("%d\n", low[M]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不吃鸳鸯锅

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值