IplImage结构及与其相关的读写函数

转载 2012年03月28日 16:39:23

IplImage结构

由于OpenCV主要针对的是计算机视觉方面的处理,因此在函数库中,最重要的结构体是IplImage结构。IplImage结构来源于Intel的另外一个函数库Intel Image Processing Library (IPL),该函数库主要是针对图像处理。IplImage结构具体定义如下:

typedef struct _IplImage

    {

        int nSize;         /* IplImage大小 */

        int ID;            /* 版本 (=0)*/

        int nChannels;     /* 大多数OPENCV函数支持1,2,3 或 4 个通道 */

        int alphaChannel; /* 被OpenCV忽略 */

        int depth;         /* 像素的位深度,主要有以下支持格式: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U,IPL_DEPTH_16S, IPL_DEPTH_32S,

IPL_DEPTH_32F 和IPL_DEPTH_64F */

        char colorModel[4]; /* 被OpenCV忽略 */

        char channelSeq[4]; /* 同上 */

        int dataOrder;     /* 0 - 交叉存取颜色通道, 1 - 分开的颜色通道.  只有cvCreateImage可以创建交叉存取图像 */

        int origin;        /*图像原点位置: 0表示顶-左结构,1表示底-左结构 */

        int align;         /* 图像行排列方式 (4 or 8),在 OpenCV 被忽略,使用 widthStep 代替 */

        int width;        /* 图像宽像素数 */

        int height;        /* 图像高像素数*/

        struct _IplROI *roi;   /* 图像感兴趣区域,当该值非空时,只对该区域进行处理 */

        struct _IplImage *maskROI; /* 在 OpenCV中必须为NULL */

        void *imageId;     /* 同上*/

        struct _IplTileInfo *tileInfo; /*同上*/

        int imageSize;     /* 图像数据大小(在交叉存取格式下ImageSize=image->height*image->widthStep),单位字节*/

        char *imageData;    /* 指向排列的图像数据 */

        int widthStep;     /* 排列的图像行大小,以字节为单位 */

        int BorderMode[4]; /* 边际结束模式, 在 OpenCV 被忽略*/

        int BorderConst[4]; /* 同上 */

        char *imageDataOrigin; /* 指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的 */

    } IplImage;

IplImage结构体是整个OpenCV函数库的基础,在定义该结构变量时需要用到函数cvCreatImage,变量定义方法如下:

IplImage* src="/cvCreateImage"(cvSize(400,300), IPL_DEPTH_8U,3);

上句定义了一个IplImage指针变量src,图像的大小是400×300,图像颜色深度8位,3通道图像。

重要结构元素说明:

depth和nChannels

depth代表颜色深度,使用的是以下定义的宏,nChannels是通道数,为1,2,3或4。
depth的宏定义:
IPL_DEPTH_8U,无符号8bit整数(8u)
IPL_DEPTH_8S,有符号8bit整数(8s)
IPL_DEPTH_16S,有符号16bit整数(16s)
IPL_DEPTH_32S,有符号32bit整数(32s)
IPL_DEPTH_32F,32bit浮点数,单精度(32f)

IPL_DEPTH_64F,64bit浮点数,双精度(64f)
注:这里的颜色深度是指单个通道的数据保存为的变量类型,例如RGB24格式的数据,通道数为3,颜色深度为IPL_DEPTH_8U

origin和dataOrder


origin变量可以有两个取值:IPL_ORIGIN_TL或者IPL_ORIGIN_BL,分别代表图像坐标系原点在左上角或是左下角。相应的,在计算机视觉领域,一个重要的错误来源就是原点位置的定义不统一。例如,图像的来源不同,操作系统不同,视频解码codec不同,存储方式不同等等,都可以造成原点位置的变化。例如,你可能认为你正在从图像上面的脸部附近取样,但实际上你却在图像下方的裙子附近取样。最初时,就应该检查一下你的系统中图像的原点位置,这可以通过在图像上方画个形状等方式实现。
dataOrder的取值可以是IPL_DATA_ORDER_PIXEL或者IPL_DATA_ORDER_PLANE,这个成员变量定义了多通道图像数据存储时颜色数据的排列方式,如果是IPL_DATA_ORDER_PIXEL,通道颜色数据排列将会是BGRBGR...的交错排列,如果是IPL_DATA_ORDER_PLANE,则每个通道的颜色值在一起,有几个通道,就有几个“颜色平面”。大多数情况下,通道颜色数据的排列是交错的。
widthStep与CvMat中的step类似,是以字节数计算的图像的宽度。成员变量imageData则保存了指向图像数据区首地址的指针。
最后还有一个重要参数roi(region of interest感兴趣的区域),这个参数是IplROI结构体类型的变量。IplROI结构体包含了xOffset,yOffset,height,width,coi成员变量,其中xOffset,yOffset是x,y坐标,coi代表channel ofinterest(感兴趣的通道)。有时候,OpenCV图像函数不是作用于整个图像,而是作用于图像的某一个部分。这是,我们就可以使用roi成员变量了。如果IplImage变量中设置了roi,则OpenCV函数就会使用该roi变量。如果coi被设置成非零值,则对该图像的操作就只作用于被coi指定的通道上了。不幸的是,许多OpenCV函数忽略了coi的值。

访问图像中的数据

就象访问矩阵中元素一样,我们希望用最直接的办法访问图像中的数据,例如,如果我们有一个三通道HSV图像(HSV色彩属性模式是根据色彩的三个基本属性:色相H、饱和度S和明度V来确定颜色的一种方法),我们要将每个点的饱和度和明度设置成255,则我们可以使用指针来遍历图像,请对比一下,与矩阵的遍历有何不同:
void sat_sv( IplImage* img ) {

for( int y=0; y<height; y++ ) {
    uchar* ptr = (uchar*) (
      img->imageData + y * img->widthStep 
    );
    for( int x=0; x<width; x++ ) {
      ptr[3*x+1] = 255;
      ptr[3*x+2] = 255;
    }
}
}
注意一下,3*x+1,3*x+2的方法,因为每一个点都有三个通道,所以这样设置。另外imageData成员的类型是uchar*,即字节指针类型,所以与CvMat的data指针类型(union)不同,而不需要象CvMat那样麻烦(还记得step/4,step/8的那种情形吗)。


roi和widthStep


roi和widthStep在实际工作中有很重要的作用,在很多情况下,使用它们会提高计算机视觉代码的执行速度。这是因为它们允许对图像的某一小部分进行操作,而不是对整个图像进行运算。在OpenCV中,所有的对图像操作的函数都支持roi,如果你想打开roi,可以使用函数cvSetImageROI(),并给函数传递一个矩形子窗口。而cvResetImageROI()是用于关闭roi的。
void cvSetImageROI(IplImage* image,CvRect rect);
void cvResetImageROI(IplImage* image);
注意,在程序中,一旦使用了roi做完相应的运算,就一定要用cvResetImageROI()来关闭roi,否则,其他操作执行时还会使用roi的定义。

经过多次试验,发现IplImage的使用有3种方式可以选择。
(1)iplImage = cvCreateImageHeader(cvSize(width,heigth),IPL_DEPTH_8U,1);
cvSetData(iplImage,pGrayBuffer,width*1); //第3个参数是行字节数
cvReleaseImageheader(&iplImage);
free(pGrayBuffer); //pGrayBuffer是程序里用来放灰度数据的空间,由calloc分配
(2)iplImage = cvCreateImage(cvSize(width,heigth),IPL_DEPTH_8U,1);
iplImage->imageData=pGrayBuffer;
iplImage->imageDataOrigin=pGrayBuffer;
cvReleaseImageheader(&iplImage);
free(pGrayBuffer);
(3) iplImage = cvCreateImage(cvSize(width,heigth),IPL_DEPTH_8U,1);
memcpy(iplImage->imageData,pGrayBuffer,iplImage->imageSize);
cvReleaseImage(&iplImage);
free(pGrayBuffer);
结论:这3种方式都正确,但推荐用第(1)种。总之,记住一点,如果imageData指向的空间是由cvCreateImage初始化的,那么用cvReleaseImage来释放;如果imageData指向的空间是后来用户指定的,那么用vReleaseImageheader(&iplImage);释放,并由用户自行释放分配的空间。
其实(1)cvSetData所做的事情和(2)中两句指针赋值类似。
如果分配和释放没搭配好,比如自行分配空间搭配上cvReleaseImage(&iplImage);就会出现“OpenCV ERROR: Unknown error code -49 (Deallocation error)”这类错误。

另外,补充一下,“利用cvCreateImage新建一个IplImage,之后一个个的对结构体的成员进行赋值”是非常多余
的,cvCreateImage就已经根据参数中的宽度,高度,通道数,颜色深度等信息对结构体的各个成员初始化了,不需要再手动的去赋值。这里要提一下char*imageDataOrigin;这个变量的说明是指针指向一个不同的图像数据结构(不是必须排列的),是为了纠正图像内存分配准备的,实际上初始化后的imageDataOrigin和imageData指向的是同一个地址。既然初始化成这样,我也没去改变它,没有产生什么影响。opencv论坛上sunlighta大侠的解释是:“预留数据接口吧!上面有这么一句话:IplImage结构来自于 Intel Image Processing Library(是其本身所具有的)。OpenCV 只支持其中的一个子集。”
注:linux下的内存对齐默认是4字节,可以通过以下语句进行修改:
#progma pack(n)


常用的五个函数(I/O)
1.     图像载入函数

函数cvLoadImage载入指定图像文件,并返回指向该文件的IplImage指针。函数支持bmp、jpg、 png、 tiff等格式的图像。其函数原型如下:

IplImage* cvLoadImage( const char* filename, int iscolor);

其中,filename 是待载入图像的名称,包括图像的扩展名;iscolor是一个辅助参数项,可选正数、零和负数三种值,正数表示作为三通道图像载入,零表示该图像作为单通道图像,负数表示载入图像的通道数由图像文件自身决定。

2.     窗口定义函数

函数cvNamedWindow定义一个窗口,用于显示图像。其函数原型如下:

int cvNamedWindow( const char* name, unsigned long flags );

其中,name是窗口名,flags是窗口属性指标值,可以选择CV_WINDOW_AUTOSIZE和0两种值。CV_WINDOW_AUTOSIZE表示窗口尺寸与图像原始尺寸相同,0表示以固定的窗口尺寸显示图像。

3.     图像显示函数

函数cvShowImage是在指定的窗口中显示图像,其函数原型如下:

void cvShowImage( const char* name, const CvArr* image );

其中,name是窗口名称,image是图像类型指针,一般是IplImage指针。

4.     图像保存函数

函数cvSaveImage以指定的文件名保存IplImage类型的指针变量,其函数原型如下:

int cvSaveImage( const char* filename, const CvArr* image );

其中,filename是图像保存路径和名称,image是IplImage指针变量。

5.     图像销毁函数

函数cvReleaseImage销毁已定义的IplImage指针变量,释放占用内存空间。其函数原型如下:

void cvReleaseImage( IplImage** image );

其中,image为已定义的IplImage指针。

相关文章推荐

IplImage结构及与其相关的读写函数

IplImage结构及与其相关的读写函数  IplImage结构 由于OpenCV主要针对的是计算机视觉方面的处理,因此在函数库中,最重要的结构体是IplImage结构。Ipl...

【OpenCV】访问图像中每个像素的值

转载请注明出处:http://blog.csdn.net/xiaowei_cqu/article/details/7557063 !!此篇是基于IplImage* (C接口或者说2.1之前版本的接口...

Opencv得到图像(IplImage)中的像素

IplImage结构来自于 Intel Image Processing Library(是其本身所具有的)。OpenCV 只支持其中的一个子集: 来自于http://wiki.opencv.o...

C++ IplImage 读取imagedata内的数据

读入一副图片,将其像素值写入txt文件中: IplImage* img=cvLoadImage(imageName); std::ofstream fileout("/home/in66/test/i...

将IplImage* 保存为图片的问题之jpg还是bmp

前段时间,干了这么一件蠢事。       工作情形是这样的,我们在手机上开发了一个软件,而测试该软件的核心算法性能的批处理算法是pc版的vs上的程序。我们当时就在手机上保存图片,并且这些图片必须是达...
  • tnt87
  • tnt87
  • 2013年12月16日 13:29
  • 2057

OpenCV读取图像_显示图像和保存图像

配置好 OpenCV 以后,包含以下两个头文件: #include "cv.h" #include "highgui.h" IplImage* image=cvLoadImage("D:\\12...
  • scudz
  • scudz
  • 2012年07月23日 09:39
  • 62380

OpenCV的IplImage数据结构的各成员变量的含义

IplImage是openCV库中很重要的一个结构体,库中的图像都是保存为这个结构体后再进行操作的。下面先转载一篇将这个结构体的文章http://www.sciencenet.cn/m/user_co...

IplImage的用法

开始做人脸检测的移植工作了,前段时间完成了opencv的1.0版的源代码包在montavista的工具链下的编译,经过交叉编译成功的将facedetect例程在DM6446的ARM上跑通了。但这个程序...
  • lxfei73
  • lxfei73
  • 2011年05月09日 15:26
  • 12861

访问IplImage数据时的注意事项

IplImage *pImg; 当直接访问pImg并将其转换为int型的时候,原本为255的数据,此时以其补码的形式给出结果,也就是-1。 int val = pImg->imageData[h * ...

OpenCV中 IplImage 与 Mat

在OpenCV中IplImage是表示一个图像的结构体,也是从OpenCV1.
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:IplImage结构及与其相关的读写函数
举报原因:
原因补充:

(最多只允许输入30个字)