【VC++】Visual Studio编辑器“智能提示(IntelliSense)”异常的解决方案 许多用户在使用Visual Studio的过程中,常会遇到“智能提示(IntelliSense)”功能异常的情况,这里提供几种用于解决这一问题的方法,希望对各位有用。原文地址:How To Resolve IntelliSense Issue In Visual Studio方法 1 前往Tools->Options->Text Editor-> All Lan...
【OpenCV3】cv::divide()使用详解 cv::divide()是一个简单的除法函数,有以下两种用法:用法1:void cv::divide( cv::InputArray src1, // 输入数组1 (分子) cv::InputArray src2, // 输入数组1 (分母) cv::OutputArray dst, // 输出数组 (scale*src1/src2) double scale = 1.0, //...
【OpenCV3】cv::convertScaleAbs()使用详解 cv::convertScaleAbs()用于实现对整个图像数组中的每一个元素,进行如下操作: 该操作可实现图像增强等相关操作的快速运算,具体用法如下:void cv::convertScaleAbs( cv::InputArray src, // 输入数组 cv::OutputArray dst, // 输出数组 double alpha = 1.0, // 乘数因子 do...
【OpenCV3】cv::compare()使用详解 cv::compare()主要用于两个图像之间进行逐像素的比较,并输出比较的结果。具体用法如下:cv::compare() bool cv::compare( cv::InputArray src1, // 输入数组1 cv::InputArray src2, // 输入数组2 cv::OutputArray dst, // 输出数组 int cmpop // 比较操作子,见下表 ...
【深度学习】制作VOC2007数据集用于Faster-RCNN训练 制作VOC2007数据集用于Faster-RCNN训练:VOC2007格式是faster-RCNN中官方给出的用于训练的数据集,把它下载下来用frcnn/tool里的训练程序跑一跑就可以得到自己的训练网络了,首先说明一下我们需要准备的文件:1. 训练所需的图片;2. 图片上ROI标注信息的XML文件;3. 将数据集分割为三部分分别用于frcnn进行训练,验证,测试等。第一步:图片的...
【OpenCV3】Stitcher图像拼接 OpenCV3中提供了一个用于图像拼接的模块——Stitcher,可以将连续拍摄的图像序列,拼接成一幅全景画面。如下所示是56幅连续拍摄的图像:0.png1.png2.png3.png4.png处理代码如下:#include < stdio.h > #include < opencv2\opencv.hpp > #include < opencv2\stitc...
【OpenCV3】如何给图像添加(不)透明度通道 透明度通道,又叫alpha通道,做用于记录图像的透明度信息。具体参照【百度百科】“alpha通道”中的介绍。透明度确切的说应该叫不透明度(Opacity),取最小值0时,表示完全透明;取最大值255时,表示完全不透明;取值越大表示越不透明。通常遇到的图像如bmp图像、jpg图像都是单通道(灰度图)、RGB三通道(彩色)图像,而没有透明度通道,那么如何使用opencv给没有透明度通道的图像添加透明度...
【OpenCV3】图像最大轮廓检测——cvFindBiggestContour()封装 此前在《【OpenCV3】图像轮廓查找与绘制——cv::findContours()与cv::drawContours()详解》一文中,详细介绍了图像轮廓的检测与绘制,但是在实际的应用中,往往需要检测目标的最大轮廓,但是OpenCV本身并没有封装这样一个函数,下面就贴上封装好的接口,供参考使用。说明:对于最大轮廓的定义,有些以轮廓的点数最多为标准,有的以所包围的面积最大为标准,这里将两种都实现一下...
【OpenCV】IplImage类型图像ROI矩形区域的快速获取 一直使用的是OpenCV C++的接口,但是有些只能用纯c的环境下,就不得不用c接口了,IplImage是c接口图像数据最基本的数据结构,获取其ROI区域的过程如下,首先通过cvSetImageROI(IplImage* src, CvRect rect)设定ROI区域,然后将给部分图像数据拷贝出来,最后通过cvResetImageROI(IplImage* src)重置ROI区域即可。这里为了使...
【Machine Learning】回归学习与示例 回归学习(Regression Learning),又称为回归分析(Regression Analysis),是一种近似方法,从未知概率分布的随机样本中获得目标函数。变量之间的相互关系可以分为确定性和非确定性两大类,前者存在明显的函数关系,如线性函数。后者的变量之间存在关系但不完全确定,在某种随机干扰下产生统计关系们无法获得精确的数学函数关系。对于存在统计关系的变量,通过大量试验获取相关统计数据,并构造目标函数并逼近该关系,即回归学习。
【Machine Learning】KNN学习算法与C语言实现 KNN学习(K-Nearest Neighbor algorithm,K最邻近方法)是一种统计分类器,属于惰性学习,对包容型数据的特征变量筛选尤其有效。KNN的基本思想是:输入没有标签即未经分类的新数据,首先提取新数据的特征并与测试集中的每一个数据特征进行比较;然后从样本中提取k个最邻近(最相似)数据特征的分类标签,统计这K个最邻近数据中出现次数最多的分类,将其作为新数据的类别。
【Machine Learning】OpenCV中的K-means聚类 在上一篇(【Machine Learning】K-means算法及优化)中,我们介绍了K-means算法的基本原理及其优化的方向。opencv中也提供了K-means算法的接口,这里主要介绍一下如何在python+opencv的环境下,使用k-means接口。
【Machine Learning】K-means算法及C语言实现 聚类算法是一种无监督的分类方法,即样本预先不知所属类别或标签,需要根据样本之间的距离或相似程度自动进行分类。聚类算法可以分为基于划分的方法、基于连通性的方法、基于密度的方法、基于概率分布模型的方法等,K-means(K均值)属于基于划分的聚类方法。
【Hisi音频】Hi3520D音频输出调试 Hi3520D音频(AUDIO)模块包括音频输入、音频输出、音频编码、音频编码和音频解码模块。音频输入和输出模块通过对Hi3520D芯片SIO设备的控制实现相应的音频输入输出功能;编码和解码模块则提供对ADPCM、G726、G711、PCM格式的音频编解码功能。读取本地音频进行输出播放,主要原理如下:芯片利用DMA将内存中的数据传输到AO设备。AO设备通过I2S时序或PCM时序向AudioCodec发送数据。AudioCodec完成数字信号到模拟信号的转换过程,并输出模拟信号。
【算法+图像处理】2D卷积与快速卷积算法C语言实现 卷积算法在图像处理中有着广泛的应用,通常使用的去噪算法、边缘增强算法等的实现都使用到了2D卷积算法。这里介绍一下2D卷积算法和快速卷积算法的C语言实现。
【python图像处理】python绘制3D图形 3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。