目标跟踪学习系列七:Real-time compressIve tracking(压缩跟踪)学习

原创 2014年04月18日 10:38:22

文章:Real-time compressIve tracking

K ZhangL ZhangMH Yang - Computer Vision–ECCV 2012, 2012 


    文章开头指出:用于跟踪的自适应表观模型,是需要很多的训练数据的。但是在在线的算法中,没有足够的数据。就此作者提出一个有效的基于多尺度特征空间的特征提取的方法来构造表观模型。通过尺度变换的方法可以扩充样本。但是很明显会增加计算的复杂度。于是作者再对扩充的样本进行压缩。使得计算复杂度降低。

    在在线的tracking当中,产生式模型(generative model)往往存在这样的问题:1、数据少,不利于模型的更新;2、所有的操作都是建立在目标位置没有突变的假设下面的,于是会有漂移的出现;3、并没有充分的利用背景信息。判别式模型(discriminative model)将tracking任务看成是二分类问题,就是要从背景中找出目标。主要的方法有:光流法,在线boosting(???还有什么勒)。主要存在的问题是,只有一个正样本,而通过正样本扩充的方法可能会引起分类器的迷惑。

   

    本文所采用的方式是:将正负样本通过尺度变换,对样本量进行扩充;然后将这个多尺度的样本空间的样本通过稀疏矩阵投影到低维空间中。这个时候既保证了样本的准确度,有效的降低了计算量。

                                            

 

 

    具体的细节:

1、将t帧中得到的目标的位置作为正样本,进行样本的扩充;同时扩充背景作为负样本;

通过  在距这个目标中心很小的距离(也是中心点)范围内,扩充正样本;通过       

以同样的原理进行负样本的扩充。

 

2、将所得到的正负样本集分别通过一组矩形滤波器集合进行进行尺度变换,得到大量的训练样本集;

这个矩形滤波器可以对样本进行多尺度的尺度变换。得到一个w*hpatch块集合。(但是我不能理解为什么文章中3.1说的

3、将得到的大量的正负样本集通过一个稀疏的随机矩阵,映射到低维空间中。将所得到的大量的训练样本集用低维空间中的向量表示(实验中大概50维)。

这个稀疏的随机矩阵是通过以下的方式得到的:

                                                          

    可见s的取值越大,得到的矩阵就越稀疏。通过这个矩阵将高维的数据映射到低维的特征空间中。

4、将得到的低维的向量通过积分图像的方式求得它的haar-like特征,得到一个特征池;

5、通过得到的特征,使用Adaboost的方法进行特征选择,来训练一个朴素贝叶斯模型,进行判断,得到目标的位置作为跟踪的结果。在最可能的目标位置。

构造的分类器的模型是这样的:

 

通过上面的特征向量就可以训练。训练好以后,在一个最可能出现的范围内:

,找到响应值最大的位置。

 

优点:

   1、其中的特征相当于取自一组不同尺度空间的矩形块的集合。使得训练的表观模型具有更好的鲁棒性。

   2、先扩充样本,再映射到低维空间中。不仅有足够的准确的信息,同时也提高了计算的速度,所以效果非常的好。

 

缺点:暂时没发现

压缩跟踪Compressive Tracking

压缩跟踪Compressive Tracking zouxy09@qq.com http://blog.csdn.net/zouxy09           好了,学习了解了稀疏感知的理论知...
  • zouxy09
  • zouxy09
  • 2012年10月27日 13:11
  • 62163

基于Deep Learning的跟踪算法总结(三)

本文是博主对最近看的相关跟踪算法的总结,其中的算法有一些不是基于深度学习的。另外本文只是对各篇论文的核心亮点简单描述,同时加上博主自己的一些看法。本文仅作为学习笔记,供学习交流,如果有什么错误或疑问,...
  • whfshuaisi
  • whfshuaisi
  • 2017年04月18日 16:43
  • 3663

深度学习在目标跟踪中的应用

转自:http://www.dataguru.cn/article-9863-1.html 摘要: 人眼可以比较轻松的在一段时间内跟住某个特定目标。但是对机器而言,这一任务并不简单,尤其是跟...
  • huixingshao
  • huixingshao
  • 2017年03月22日 09:20
  • 3400

目标跟踪学习算法DSST

原文:http://blog.csdn.net/gxb0505/article/details/52601613?locationNum=8 简介(Accurate Scale Estimati...
  • zxxuan
  • zxxuan
  • 2017年03月02日 21:28
  • 2046

目标跟踪学习系列五:Real-time visual tracking via online weighted multiple instance learning(WMIL)学习

WMIL 学习
  • u012192662
  • u012192662
  • 2014年03月16日 14:29
  • 10271

目标跟踪系列一:压缩跟踪(compressive tracking)

入坑满两年,决定开始写关于目标跟踪的博客了,欢迎批评指正。 主要关注的是single-object, short-term, model-free visual tracking problem. 即...
  • zixiximm
  • zixiximm
  • 2016年11月17日 14:20
  • 945

目标跟踪算法--Staple: Complementary Learners for Real-Time Tracking

文章下载链接:文章下载链接 代码下载链接:Staple代码 ———————————————————————————————————————————— 今天要讲的这篇文章也是基于相关滤波器(不懂相...
  • crazyice521
  • crazyice521
  • 2017年03月25日 09:26
  • 3787

《Real-Time Compressive Tracking》论文理解

这是Kaihua Zhang发表在ECCV2012的paper,paper的主题思想是利用满足压缩感知(compressive sensing)的RIP(restricted isometry pro...
  • pbypby1987
  • pbypby1987
  • 2015年05月11日 10:29
  • 1400

Real-Time Compressive Tracking阅读与分析

知识点 压缩感知 如果信号在某一个正交空间具有稀疏性(即可压缩性),就能以较低的频率(远低于奈奎斯特采样频率)采样该信号,并可能以高概率精确的重建该信号。 简单来说:可以用一个随机感知矩阵...
  • MollyLau
  • MollyLau
  • 2016年07月08日 20:56
  • 256

real-time compressive tracking 所感

最近在学习张开华教授的real-time compressive tracking这篇文章,记录下自己体会。 算法的工程网址:http://www4.comp.polyu.edu.hk/~cslzha...
  • u010356101
  • u010356101
  • 2016年09月12日 20:38
  • 256
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:目标跟踪学习系列七:Real-time compressIve tracking(压缩跟踪)学习
举报原因:
原因补充:

(最多只允许输入30个字)