题目描述:
现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … 3/1 3/2 3/3 … 4/1 4/2 … 5/1 … … 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…
输入描述:
整数N(1≤N≤10000000)
输出描述:
表中的第N项
样例输入 Sample Input
7
样例输出 Sample Output
1/4
以上是题目描述部分,下面来讲解题思路:
首先,拿到题目,可以看一下题目中给的数字,发现特别有规律,那么大概可以却定这道题是找规律性的题目,然后,就可以顺着找规律的思路继续。
我们可以将题目中给的数字重新组织一下,可以更加清晰的看出规律:
1/1
2/1 1/2
3/1 2/2 1/3
4/1 3/2 2/3 1/4
...
ok,这样看起来就更加顺眼了,可以发现,每行分子或分母最大数字就是行数,而从左往右看,奇数行和偶数行增加的规律刚好相反,用两个变量i,j描述行和列,就可以看出规律:
偶数行:从右往左:分子=j; 分母=i-j+1
偶数行:从左往右:分子=i-j+1; 分母=j
好的,规律看出来了,代码就好写了,下面看:
#include<stdio.h>
int getColumn(int n) //通过n得到位于第几行
{
int i,j;
for(i=0;i<n;i++)
{
j=i*(i+1)/2;
if(j>=n)
{
break;
}
}
return i;
}
int main()
{
int i,j,n,h,r1,r2;
scanf("%d",&n);
i=getColumn(n);
h=i*(i-1)/2;
j=n-h; //计算位于第c行从左往右数第几个
if(i%2==0) //如果是奇数行
{
//偶数行从右往左计数
r1=j;
r2=i-j+1;
}
else //如果是偶数行
{
//偶数行从往右计数
r1=i-j+1;
r2=j;
}
printf("%d/%d\n",r1,r2);
return 0;
}
OK,解题完成,谢谢!