基于visual Studio2013解决面试题之1309求子集

本文介绍了一种通过组合问题转换来生成集合所有子集的算法。使用N元组表示子集,其中每个元素取0或1,代表是否包含原始集合中的对应元素。提供了完整的C++实现代码,展示了如何枚举所有可能的子集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >




题目



解决代码及点评

/*
    把求子集运算转换为组合问题。
    假设集合中包含 N 个元素,   子集合数  =     C(N, 0) + C(N, 1) + ... + C(N, N-1) + C(N, N),对于
    任一个子集合,可以用一个 N 元组表示,即  <S1, S2, ... Sn-1, Sn>,  其中 Si 取值范围为(0, 1),
    0 表示不该子集合不包含该元素,1 表示该子集合包含该元素。因此,求子集合就转换成了
    罗列所示可能组合的算法。子集合数  = 2^n。
*/

#include <iostream>
using namespace std;

void Sub(int i, int n, char *pszBuf1, char *pszBuf2)
{
    int j;
    if (i >= n)
    {
        cout<<"(";
        for (j = 0; j < n; j++)
        {
            if (pszBuf2[j] == '1')
            {
                cout<<pszBuf1[j];
            }
        }
        cout<<")"<<endl;
    }
    else
    {
        pszBuf2[i] = '1';
        Sub(i+1, n, pszBuf1, pszBuf2);
        pszBuf2[i] = '0';
        Sub(i+1, n, pszBuf1, pszBuf2);
    }
}


int main()
{
    char szBuf1[] = "ac";
    char szBuf2[10] = {0};
    Sub(0,strlen(szBuf1),szBuf1, szBuf2);
    system("pause");
    return 0;
}


代码下载及其运行

代码下载地址:http://download.csdn.net/detail/yincheng01/6704519

解压密码:c.itcast.cn


下载代码并解压后,用VC2013打开interview.sln,并设置对应的启动项目后,点击运行即可,具体步骤如下:

1)设置启动项目:右键点击解决方案,在弹出菜单中选择“设置启动项目”


2)在下拉框中选择相应项目,项目名和博客编号一致

3)点击“本地Windows调试器”运行


程序运行结果








评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尹成

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值