weixin_30608131
码龄7年
  • 646,951
    被访问
  • 暂无
    原创
  • 581,111
    排名
  • 83
    粉丝
  • 0
    铁粉
关注
提问 私信
  • 加入CSDN时间: 2015-08-14
博客简介:

weixin_30608131的博客

查看详细资料
个人成就
  • 获得133次点赞
  • 内容获得0次评论
  • 获得857次收藏
创作历程
  • 652篇
    2019年
  • 813篇
    2018年
  • 708篇
    2017年
  • 496篇
    2016年
  • 410篇
    2015年
  • 316篇
    2014年
  • 245篇
    2013年
  • 238篇
    2012年
  • 150篇
    2011年
  • 89篇
    2010年
  • 90篇
    2009年
  • 75篇
    2008年
  • 37篇
    2007年
  • 45篇
    2006年
  • 23篇
    2005年
  • 13篇
    2004年
成就勋章
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

狄利克雷卷积 && 莫比乌斯反演

狄利克雷卷积 && 莫比乌斯反演 狄利克雷卷积数论函数及其运算数论函数是指定义域是正整数,值域是一个数集的函数。加法,逐项相加,即\((f+h)(n)=f(n)+h(n)​\);数乘,这个数和每一项都相乘,即 \((xf)(n)=x·f(n)​\)狄利克雷卷积定义两个数论函数的狄利克雷卷积 \(*:​\)若\(t=f*g​\),则\(t(n)=\sum_{...
转载
发布博客 2019.09.22 ·
221 阅读 ·
0 点赞 ·
0 评论

二项式反演与错排问题

二项式反演与错排问题常见简单组合恒等式:\(C_n^m=C_n^{n-m}\)\(C_n^m=C_n^{m-1}+C_{n-1}^{m-1}\)\(\sum_{i=0}^{n}C_n^i=2^i\)\(\sum_{i=0}^{n}(-1)^i*C_n^i=[n=0]\)3.4.证明:由二项式定理易证。令\(x=1,y=1\),可得3式令\(x=1,y=-1\), 可...
转载
发布博客 2019.09.21 ·
214 阅读 ·
0 点赞 ·
0 评论

Miller_Rabin

Miller_RabinPart0 前言:Miller_Rabin是一个高效判定素数的随机算法。其运用到的理论知识是:费马小定理 \(and\) 二次探测定理。Part1 费马小定理:关于这个定理没什么好多讲的。\[若p是素数,则\ \ a^p\equiv a\mod p\]Part2 二次探测定理:\[若a^2\equiv 1\mod p\ 且p是素数\\则a\...
转载
发布博客 2019.09.21 ·
131 阅读 ·
0 点赞 ·
0 评论

无向图的连通性与相关问题

目录 无向图的连通性与相关问题 一、相关概念: 二、Tarjan与割边、割点: 三、Tarjan与双连通分量 四、欧拉路问题 无向图的连通性与相关问题一、相关概念:给定一张无向图\(G=(V,E)\):1、割点:若\(...
转载
发布博客 2019.07.29 ·
225 阅读 ·
0 点赞 ·
0 评论

冗余路径 Redundant Paths e-DCC缩点

冗余路径 Redundant Paths题目传送sol:如果两点间存在至少两条不重复的路径,这说明他们两点在同一个边双连通分量(不存在割边)。那么可以进行e-DCC的缩点,得到一棵树。对于这棵树广泛意义上的叶子节点(度数为1)而言,都还至少需要一条边连向他。那么可以贪心的一次连两个叶子节点,答案显然就是\(cnt+1>>1\)。#include<bits/...
转载
发布博客 2019.07.28 ·
80 阅读 ·
0 点赞 ·
0 评论

poj1275 Cashier Employment 差分约束

poj1275 Cashier Employment题目传送sol:不是很容易想到。。不妨令\(S[i](0≤i≤23)\)表示前i小时已经定了i个人。那么根据题目给定条件及隐含条件作出约束:\[s[i]-s[i-8]≥need[i]\ (8≤i≤23)\\sum-(s[i+16]-s[i])≥need[i]\ (0≤i≤7)\\s[i-1]≤s[i]\ (0≤i≤23...
转载
发布博客 2019.07.28 ·
42 阅读 ·
0 点赞 ·
0 评论

无向图必经点、必经边的相关问题

目录 无向图必经点、必经边的相关问题 一、 任意两点间路径的必经边 二、 任意两点间路径的必经点 三、 任意两边间路径的必经点 四、 任意两边间路径的必经边 五、声明: 无向图必经点、必经边的相关问题一、 ...
转载
发布博客 2019.07.30 ·
116 阅读 ·
0 点赞 ·
0 评论

HNOI2012 矿场搭建 v-DCC缩点+分类讨论

HNOI2012 矿场搭建题目传送sol:首先需要对v-DCC缩点,对于缩点后的每一个连通块需分类讨论一下。对于每一个连通块(v-DCC):1、不存在割点。需要建两个出口(毁掉一个还得有一个)。2、存在一个割点。需要一个出口。(毁掉割点,走连通块内出口;毁掉连通块内出口,走割点到别的连通块出口)。3、存在至少两个割点。不需要出口。(不管毁掉哪里,都能到别的连通块出口)。方...
转载
发布博客 2019.07.28 ·
42 阅读 ·
0 点赞 ·
0 评论

池化技术(一)Druid是如何管理数据库连接的?

Druid是如何管理数据库连接的前置:基于依赖程序的版本信息:druid:1.1.16 驱动程序mysql-connector-java:8.0.17下方流程中涉及到的类、属性、方法名均列在这里:Druid-类图-属性表 ←该表格用来辅助理解下面的流程图和代码,不用细看,混乱时可用来理清关系。本文会通过getConnection作为入口,...
转载
发布博客 2019.08.28 ·
306 阅读 ·
0 点赞 ·
0 评论

【框架】利用Spring的BeanPostProcessor来修改bean属性

利用Spring的BeanPostProcessor来修改bean属性一、BeanPostProcessor是什么?什么时候触发?可以用来做什么?1.它是什么?首先它是一个接口,定义了两个方法:public interface BeanPostProcessor { @Nullable //所有bean初始化之前触发该方法 default Object p...
转载
发布博客 2019.07.16 ·
653 阅读 ·
1 点赞 ·
0 评论

Linux使用crontab定时执行Python脚本清理日志

Linux中,周期执行的任务一般由crond这个守护进程来处理。cron读取一个或多个配置文件,这些配置文件中包含了命令行及其调用时间。crond的配置文件称为“crontab”,是“cron table”的简写。一、crond服务 -- crontab查看cron服务状态[root@VM_138_80_centos Home]# sudo service crond sta...
转载
发布博客 2019.08.03 ·
195 阅读 ·
0 点赞 ·
0 评论

MySQL5.7运行CPU达百分之400处理方案

用户在使用 MySQL 实例时,会遇到 CPU 使用率过高甚至达到 100% 的情况。本文将介绍造成该状况的常见原因以及解决方法,并通过 CPU 使用率为 100% 的典型场景,来分析引起该状况的原因及其相应的解决方案。常见原因系统执行应用提交查询(包括数据修改操作)时需要大量的逻辑读(逻辑 IO,执行查询所需访问的表的数据行数),所以系统需要消耗大量的 CPU 资源以维护从存储系统...
转载
发布博客 2019.08.03 ·
195 阅读 ·
0 点赞 ·
0 评论

CentOS7+MySQL5.6配置主从

一、安装环境操作系统:CentOS-7-x86_64-Minimal-1810.iso安装来源:mysql57-community-release-el7-10.noarch.rpm数据库版本:mysql57-community-release-el7-10.noarch数据库地址:  192.168.176.218(主)  192.168.176.219(从)首先...
转载
发布博客 2019.08.03 ·
28 阅读 ·
0 点赞 ·
0 评论

CentOS7-Minimal安装MySQL服务

CentOS7默认安装的是Mariadb而不是mysql,而Mariadb是mysql的一个分支,安装mysql会覆盖Mariadb一、下载MySQL官方的Yum Repository[root@localhost ~]# wget -i -c https://repo.mysql.com//mysql57-community-release-el7-10.noarch.rp...
转载
发布博客 2019.08.03 ·
212 阅读 ·
0 点赞 ·
0 评论

python使用pip离线安装库

一、前言及环境1. 场景及整体思路最近在做一个AI智能项目,开发过程中用自己的机子安装了很多库,开发完之后需要部署到公司内网的环境中,但是客户那边的环境是不能联网的,于是就需要离线进行库的安装。上网搜了一下,大概思路是:从可以联网电脑导出库的名称到文件;下载指定库到指定文件夹;将库名称文件和安装包拷贝到离线环境进行安装整体流程如下图所示:整个流程主要使用到库管理...
转载
发布博客 2019.08.03 ·
105 阅读 ·
0 点赞 ·
0 评论

python xlwt 设置单元格样式

使用xlwt中的Alignment来设置单元格的对齐方式,其中horz代表水平对齐方式,vert代表垂直对齐方式。VERT_TOP = 0x00 上端对齐VERT_CENTER = 0x01 居中对齐(垂直方向上)VERT_BOTTOM = 0x02 低端对齐HORZ_LEFT = 0x01 左端对齐HO...
转载
发布博客 2019.08.27 ·
614 阅读 ·
0 点赞 ·
0 评论

js数组去重与扁平化去重(含es6语法)

数组去重var arr = [1, 43, 4, 3, 2, 4, 3]; // 去重后 arr = [1, 43, 4, 3, 2]传统方法,for循环实现//方法一:function dedupe(arr) { var rets = []; for (var i = 0; i < arr.length; i ++) {...
转载
发布博客 2019.09.12 ·
144 阅读 ·
0 点赞 ·
0 评论

第一题

T1 2019/8/2001 #T1 用1,2,3,4创建一个各个位置之间互不相同的的四位数,并打印出来02 num=range(1,5);03 cal=0;04 for one in num:05 for two in num:06 for three in num:07 ...
转载
发布博客 2019.08.20 ·
58 阅读 ·
0 点赞 ·
0 评论

考试计时器练习

Source file01 import tkinter02 import time03 04 star=time.time()05 06 def gettime(): 07 elap=time.time()-star# 获取时间差08 hours=int(elap/3600)09 minutes = int((elap-...
转载
发布博客 2019.08.21 ·
117 阅读 ·
0 点赞 ·
0 评论

第三题

Source file01 #T302 # 题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?03 04 def cansqur(num):05 i=106 while i*i <= num:07 if i*i == num:08 return ...
转载
发布博客 2019.08.20 ·
111 阅读 ·
0 点赞 ·
0 评论
加载更多