召回率和精度

      召回率(Recall)和精度(Precise)是广泛用于信息检索统计学分类领域的两个度量值,用来评价结果的质量。其中召回率是是检索出的相关文档数和文档库中所有的相关文档数的比率,衡量的是检索系统的查全率。精度是检索出的相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率

      从一个大规模数据集合中检索文档时,可把文档分成四组:

      1. 系统检索到的相关文档(A)
      2. 系统检索到的不相关文档(B)
      3. 相关但是系统没有检索到的文档(C)
      4. 不相关且没有被系统检索到的文档(D)

则召回率 R 和精度 P 的计算公式分别为

(1)召回率

         R = A / ( A + C )

其中分子为检索到的相关文档数,分母为所有相关文档总数。

(2)精度

         P = A / ( A + B )

其中分子为检索到的相关文档数,分母为所有检索到的文档总数。


      举例来说:一个数据库有 500 个文档,其中有 50 个文档符合定义的问题。系统检索到75 个文档,但是只有 45 个符合定义的问题。此时有

(1)召回率   

         R = 45 / 50 = 90%

(2)精度      

         P = 45 / 75 = 60%


《目标检测新方法:引导锚点区域提议网络(GA-RPN)》一文中详细介绍了GA-RPN改进传统锚点机制,以提升目标检测召回率精度的具体方法。该技术通过引入可变形锚点学习指导规则,实现了锚点与目标更好的对齐。 参考资源链接:[目标检测新方法:引导锚点区域提议网络(GA-RPN)](https://wenku.csdn.net/doc/489m8fx872?spm=1055.2569.3001.10343) 在传统的目标检测算法中,锚点通常是固定大小形状的。这种机制在面对不同大小形状的目标时往往不够灵活,导致召回率降低。而GA-RPN通过学习目标的形状尺寸分布,引导锚点生成过程,使之适应目标的实际形状尺寸,从而提升召回率。 此外,GA-RPN对锚点的位置形状进行了动态调整,使之与卷积特征图更好地对齐,以此提高精度。不同于传统的密集锚点分布,GA-RPN通过较少数量的锚点,减少了计算负担,同时通过一致性原则保持高效率。这种新的锚点调整策略有效平衡了精度速度,使得目标检测器在实际应用中具有更高的实用性。 具体来说,GA-RPN在训练过程中通过监督学习,使得模型能够预测出最适合当前特征图的目标锚点。它通过整合多个尺度的特征图,并为每个尺度设计不同的锚点尺寸比例,实现了对不同尺寸目标的灵活匹配。这种方法不仅能够提高模型在面对不同大小目标时的检测精度,而且还能够在一定程度上减少传统锚点机制中引入的大量无用锚点,从而提升整体的目标检测效率。 对于那些对目标检测GA-RPN感兴趣的读者来说,《目标检测新方法:引导锚点区域提议网络(GA-RPN)》将是一个不可多得的资源。它不仅详细解释了GA-RPN的技术原理,还提供了大量的实验结果分析,帮助读者更好地理解这一创新方法的潜力应用前景。 参考资源链接:[目标检测新方法:引导锚点区域提议网络(GA-RPN)](https://wenku.csdn.net/doc/489m8fx872?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值