利用 word2vec 训练的字向量进行中文分词

原创 2013年12月04日 18:28:04
        
       最近针对之前发表的一篇博文《Deep Learning 在中文分词和词性标注任务中的应用》中的算法做了一个实现,感觉效果还不错。本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的代码,也希望为对此感兴趣的朋友提供点参考。文中重点介绍训练算法中的模型参数计算,以及 Viterbi 解码算法。




相关链接

作者: peghoty 

出处: http://blog.csdn.net/itplus/article/details/17122431

欢迎转载/分享, 但请务必声明文章出处.


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

利用 word2vec 训练的字向量进行中文分词

最近针对之前发表的一篇博文《Deep Learning 在中文分词和词性标注任务中的应用》中的算法做了一个实现,感觉效果还不错。本文主要是将我在程序实现过程中的一些数学细节整理出来,借此优化一下自己的...
  • jdbc
  • jdbc
  • 2015年10月29日 16:04
  • 1851

word2vec词向量训练及中文文本相似度计算

本文是讲述如何使用word2vec的基础教程,文章比较基础,希望对你有所帮助! 官网C语言下载地址:http://word2vec.googlecode.com/svn/trunk/ Word2vec...

Word2Vec中文语料实战

1、环境配置             本人使用的是MacBook +Python2.7.11             首先,安装NLP工具包gensim,这里包含了今天的主角:Word2Vec pi...

R语言︱文本挖掘——jiabaR包与分词向量化的simhash算法(与word2vec简单比较)

《数据挖掘之道》点评:虽然我比较执着于Rwordseg,并不代表各位看管执着于我的执着,推荐结巴分词包,小巧玲珑,没有那么多幺蛾子,而且R版本和python版本都有,除了词性标注等分词包必备功能以外,...

【中文分词】亲手开发一款中文分词器——原理

前文已经谈到几种分词方法的手段和困难,本文将从最基本原理开始,一步一步分析我自己的分词器是如何开发的。 从最初出发点开始,我们需要确定那些字的组合是词语。每两个字能否组合成词语,其实取决于两个字同时以...

通过偏旁信息改进中文字向量

基本思想在中文中,我们都知道汉字是由若干部分组成的,称为偏旁。而且偏旁也往往能够提供丰富的语义信息。比如,单人旁组成的字往往意指人,如“他”、“你”等;三点水为部首的字往往与水有关,如“海”、“江”等...

利用Word2Vec训练词向量过程

先明确一点,选用不同的词向量作为模型的初始值,效果的差异非常大!那么怎么产生一个好的词向量呢?参看文章http://licstar.net/archives/tag/%E8%AF%8D%E5%90%9...

【python gensim使用】word2vec词向量处理中文语料

word2vec介绍word2vec官网:https://code.google.com/p/word2vec/ word2vec是google的一个开源工具,能够根据输入的词的集合计算出词与词之间的...
  • churximi
  • churximi
  • 2016年05月21日 20:57
  • 23379

word2vec (四) 动手训练一个词向量空间

word2vec 使用实例

用Stanford Parse(智能语言处理)去实现分词器

昨天研究学习了一下 Stanford Parse ,想利用 Stanford Parse 智能切词的效果结合到lucene 分词器中的想法;由于项目时间 仓促,部分研究没有完成。代码还存在bug,希...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:利用 word2vec 训练的字向量进行中文分词
举报原因:
原因补充:

(最多只允许输入30个字)