关闭

POJ 2185 Milking Grid

414人阅读 评论(0) 收藏 举报

http://poj.org/problem?id=2185

题意:给你一个字符矩阵,求出它的最小覆盖子矩阵,即使得这个子矩阵的无限复制扩张之后的矩阵,能包含原来的矩阵。 即二维的最小覆盖子串。

思路:KMP很好的一道题。首先易证:最小覆盖子矩阵一定靠左上角。那么,我们考虑求出每一行的最小重复串长度,所有行的最小重复串的长度的lcm就是最小重复子矩阵的宽。然后我们对列也做相同的操作。于是我们就可以求得最小重复子矩阵的大小了。(这里要注意一点:当所得的宽大于原来的宽时,就让等于原来的宽,长也如此)。算法实现:算法的核心在于高效的求出每一行和每一列的最小重复串,这个可以最原串做一次KMP中的get_next()。(注:以上部分为转载)

#include<stdio.h>
#include<string.h>
char map[10005][80] ;
int N ,M ;
long long res1 ,res2 ; 
int next[10005] ;

long long gcd(long long a, long long b){
	if(b == 0)	return a ; 
	else return gcd(b,a%b);	
}
long long lcm(long long a, long long b){
	return a / gcd(a,b) * b ;			
}
void getnext_r(int r){
	int i, j ;
	next[0] = -1 ;
	i = 1 ; j = -1 ;
	for( ;i<M;i++ ){
		while(j!=-1 && map[r][i]!=map[r][j+1])
			j = next[j] ;
		if(map[r][i] == map[r][j+1])
			j++ ;	
		next[i] = j ;
	}	
	j = M - 1 ;
	long long l = j - next[j] ;
	res1 = lcm(res1 , l);
}
void getnext_c(int c){
	int i, j ;
	next[0] = -1 ;
	i = 1 ; j = -1 ;
	for( ;i<N;i++ ){
		while(j!=-1 && map[i][c]!=map[j+1][c])
			j = next[j] ;
		if(map[i][c] == map[j+1][c])	
			j++ ;	
		next[i] = j ;
	} 	
	j = N - 1 ;
	long long l = j - next[j] ;
	res2 = lcm(res2 , l );
}
int main(){
	while(scanf("%d %d",&N,&M) == 2){
		for(int i=0;i<N;i++){
			scanf("%s",map[i]);	
		}
		res1 = 1 ;
		for(int i=0;i<N;i++){	//	行 
			getnext_r(i);
			if(res1 > M){		//一旦大于M就取M
				res1 = M ; break ;	
			}
		}	
		res2 = 1 ;
		for(int j=0;j<M;j++){
			getnext_c(j);	
			if(res2 > N){		//一旦大于N,就去N , 这里WA了2次
				res2 = N ; break ;	
			}
		}
		printf("%lld\n",res1*res2);
	}	
	return 0 ;	
}



0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:206345次
    • 积分:4187
    • 等级:
    • 排名:第7596名
    • 原创:212篇
    • 转载:17篇
    • 译文:0篇
    • 评论:42条
    最新评论