http://poj.org/problem?id=2185
题意:给你一个字符矩阵,求出它的最小覆盖子矩阵,即使得这个子矩阵的无限复制扩张之后的矩阵,能包含原来的矩阵。
思路:KMP很好的一道题。首先易证:最小覆盖子矩阵一定靠左上角。那么,我们考虑求出每一行的最小重复串长度,所有行的最小重复串的长度的lcm就是最小重复子矩阵的宽。然后我们对列也做相同的操作。于是我们就可以求得最小重复子矩阵的大小了。(这里要注意一点:当所得的宽大于原来的宽时,就让等于原来的宽,长也如此)。算法实现:算法的核心在于高效的求出每一行和每一列的最小重复串,这个可以最原串做一次KMP中的get_next()。(注:以上部分为转载)
#include<stdio.h>
#include<string.h>
char map[10005][80] ;
int N ,M ;
long long res1 ,res2 ;
int next[10005] ;
long long gcd(long long a, long long b){
if(b == 0) return a ;
else return gcd(b,a%b);
}
long long lcm(long long a, long long b){
return a / gcd(a,b) * b ;
}
void getnext_r(int r){
int i, j ;
next[0] = -1 ;
i = 1 ; j = -1 ;
for( ;i<M;i++ ){
while(j!=-1 && map[r][i]!=map[r][j+1])
j = next[j] ;
if(map[r][i] == map[r][j+1])
j++ ;
next[i] = j ;
}
j = M - 1 ;
long long l = j - next[j] ;
res1 = lcm(res1 , l);
}
void getnext_c(int c){
int i, j ;
next[0] = -1 ;
i = 1 ; j = -1 ;
for( ;i<N;i++ ){
while(j!=-1 && map[i][c]!=map[j+1][c])
j = next[j] ;
if(map[i][c] == map[j+1][c])
j++ ;
next[i] = j ;
}
j = N - 1 ;
long long l = j - next[j] ;
res2 = lcm(res2 , l );
}
int main(){
while(scanf("%d %d",&N,&M) == 2){
for(int i=0;i<N;i++){
scanf("%s",map[i]);
}
res1 = 1 ;
for(int i=0;i<N;i++){ // 行
getnext_r(i);
if(res1 > M){ //一旦大于M就取M
res1 = M ; break ;
}
}
res2 = 1 ;
for(int j=0;j<M;j++){
getnext_c(j);
if(res2 > N){ //一旦大于N,就去N , 这里WA了2次
res2 = N ; break ;
}
}
printf("%lld\n",res1*res2);
}
return 0 ;
}