关闭

POJ 2155 Matrix

297人阅读 评论(0) 收藏 举报

http://poj.org/problem?id=2155

题意: 给定一个n*n的0-1矩阵,执行一些如下的两种操作:

C a,b,c,d :将矩阵中(a,b)到(c,d)的格子中的0-1进行“非”操作

Q a b :询问当前(a,b)位置的元素的值

思路: 二维树状数组

本题给出的要求正好与树状数组的操作"相反",但是还是可以转换成树状数组的操作。本题的要求是对二维数组的某一个矩形范围进行异或操作,而是询问单个元素的值。一种思路是用一个二维数组c[][]来标记数组中值的变换次数,通过变换的次数就可以得出当前数组元素的值了。我们可以先分析一下一维时候的情况,假设一个一维的数组array[] ,现在要求给区间[a,b]内的每个元素增加一个值add,我们可以这样利用树状数组,将a元素增加add值,将(b+1)元素增加一个-add值,接下去每次询问k位置的值的时候,只要将1-k位置的所有元素的值相加就是最后k位置的元素的值(PS:一开始元素的所有值都是0)。将此思想推广到二维上就可以得出本题的算法。此算法的复杂度为:O( Q*logn*logn) 。

代码:

#include<stdio.h>
#include<string.h>
int T ;
int N ,Q ;
int c[1005][1005] ;
char ch[4] ;
int x,y,x1,y1 ;
int lowbit(int i){
	return i & (i ^ (i-1)) ;	
}
void add(int rr, int cc,int ad){
	int j ;
	while(rr <= N){
		j = cc ;
		while(j <= N){
			c[rr][j] += ad ;
			j += lowbit(j) ;	
		}	
		rr += lowbit(rr) ;
	}
}
int sum(int rr , int cc){
	int j ,res = 0 ;
	while(rr >= 1){
		j = cc ;
		while(j >= 1){
			res += c[rr][j] ;
			j -= lowbit(j) ;
		}	
		rr -= lowbit(rr) ;
	}
	return res ;	
}
int main(){
	scanf("%d",&T) ;
	for(int cas =1 ;cas<= T;cas++){
		scanf("%d %d",&N,&Q);
		memset(c,0,sizeof(c));
		if(cas != 1)
			printf("\n");
		for(int i=0;i<Q;i++){
			scanf("%s",ch);
			if(ch[0] == 'C'){
				scanf("%d %d %d %d",&x,&y,&x1,&y1);
				add(x,y,1); 
				add(x1+1,y,-1);
				add(x,y1+1,-1);
				add(x1+1,y1+1,1);
			}
			else{
				scanf("%d %d",&x,&y);
				int res = sum(x,y);
				if(res & 1)	printf("1\n");
				else 	printf("0\n");
			}	
		}	
	}
	return 0 ;	
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:202476次
    • 积分:4158
    • 等级:
    • 排名:第7368名
    • 原创:212篇
    • 转载:17篇
    • 译文:0篇
    • 评论:42条
    最新评论