关闭
当前搜索:

如何设计数据库来解决实际问题

(一)前面课程逻辑梳理任何一门数据的软件也好,数据构架也好,或者说是数据学科也好,最终都是要解决实际问题的,大家说是不是?前面jacky讲为什么要引入数据库的时候,举了一个案例,大家还记的吗?大家还记得这张图吧jacky说这家手机公司对于手机数据的管理是混乱的,给出了3点混乱的理由,然后引出了我们要引入数据库的必要性;jacky说既然我们的数据库这么重要,那么操作数据库的软件就一定会出现,那么MyS...
阅读(5) 评论(0)

MySQL软件的安装(Windows版)

(一)MySQL下载 进入https://www.mysql.com/网页,找到DOWNLOADS然后点击进入页面,在页面中,我们选择社区版Community 点击,选择MySQL Community Server下的DOWNLOAD,点击,我们选择相应的操作系统,并点击下载即可这里需要注意的是,我们下载相应系统的相应版本时,可以不注册,在跳转后页面选择,No thanks, just start...
阅读(70) 评论(0)

数据库的底层逻辑

(一) 为什么说数据库是一种“神秘技术”1.案例开篇-大部分公司对于数据和数字的管理都是低效率的 我们知道,一个公司要想想正常运转,一定是多部门协同工作的;比如一个销售手机的公司,当月销售了1万部手机,想想我们大部分公司是怎么做的?销售部一定要记录这1万笔的销售,财务也要记账,销售了1万部,物流要记录运送了这1万部,运营也要记录着1万部,以备后续的运营分析; 我们思考下,案例中的企业管理体系有什...
阅读(76) 评论(0)

第1章 数据库前言

(一)开场白 大家好,欢迎大家跟我一起学习《MySQL数据分析实战》这门课程,对于数据分析师来说,数据库是每一个从业者都必须掌握的课程,我们这门课是从实战的角度出发,我会帮助大家梳理MySQL中的逻辑脉络,帮助大家顺利的解决工作中遇到的各种问题。 (二)讲师简介 在开始之前,先做一个简单的自我介绍: 我是jacky(朱元禄),有8年世界50强金融机构数据管理和一线数据分析师从业经验,喜...
阅读(215) 评论(0)

Python数据类型

学习任何一门学科或者手艺,最忌讳的就是想的太多,做的太少; 有很多朋友私信问我:jacky,我们该如何选择Python的课程?或是我们该如何选择Mysql课程?到底谁的课件和书籍才是最好的? 借着今天分享的机会,我统一回答: 首先,我们要买一本最权威的书:比如说Python的书籍,其他人推荐的就是那么几本,那么买一本研读,然后做笔记; 其次,听一个视频课件,选一个你不反感的,...
阅读(81) 评论(0)

用逻辑回归模型解决互联网金融信用风险问题

(一)基础铺垫 逻辑回归(Logistic Regression) 针对因变量为分类变量而进行回归分析的一种统计方法,属于概率型非线性回归。 优点:算法易于实现和部署,执行效率和准确度高; 缺点:离散型的自变量数据需要通过生产虚拟变量的方式来使用; (二)底层原理及逻辑 在线性回归中,因变量是连续变量,那么线性回归能够根据因变量和自变量之间存在的线性关系来构造回归方程;但是,一旦...
阅读(53) 评论(0)

如何建立投资模型

建立投资模型-辅助投资决策理论基础-正负向情绪分析网络上有些舆情是来自于微博等社交网络,建立投资模型的逻辑 使用微博正负评情绪指标判断进场点; 正负向情绪分析 是否有效? 鸡生蛋还是蛋生鸡的问题是因为投资人的情绪不好才导致股票下跌,还是因为股票导致情绪不好;...
阅读(66) 评论(0)

秒懂数据类型的真谛—Python基础前传(4)

一切编程语言都是人设计的,既然是人设计的,那么设计各种功能的时候就一定会有它的道理,那么设计数据类型的用意是什么呢? (一) 基本数据类型 基本数据类型:数字 int 字符串 str 布尔值 bool 列表 list 元组 tuple 字典 dict (二)不同类型,不同“形状” 写程序就如同写作文,当我们把不同的“形状”写在作文中,你一眼就可以看出我们作文中的不同类型是什么 不同的形状就相...
阅读(34) 评论(0)

Python回归分析五部曲(三)—一元非线性回归

(一)基础铺垫 一元非线性回归分析(Univariate Nonlinear Regression)在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条曲线近似表示,则称为一元非线性回归分析。 一元二次方程: y=a2x2+a1x1+a0x0y = a_2x^2 + a_1x^1 + a_0x^0 一元三次方程: y=a3x3+a2x2+a1x1+a0x0y = a_3x^3 + a...
阅读(141) 评论(0)

两个字说清楚编程语言实质-Python基础前传(3)

大家都知道Python对于数据分析而言,意义重大。但对于运用Python来做数据分析的我们来说,却有不小的难度:首先大部分伙伴不是计算机相关专业的科班出身,其次我们基本上也都没有程序员经验,所以正确的理解编程语言,对于我们学习Python就显得尤为重要,那么正确的理解编程语言对于我们学习Python就显得格外重要,今天jacky就跟大家分享:编程语言的实质到底是什么? (一)编程语言的实质...
阅读(116) 评论(0)

快速掌握Python的捷径-Python基础前传(1)

文: jacky(朱元禄) 开文序 最近看新闻,发现高考都考Python了,随着人工智能的火热,学数据科学的人越来越多了!但对于数据行业本身来说,现象级的火热,这并不是什么好事。 方丈高楼平地起,无论做什么事,基础都是最重要的。数据统计,朋友圈中最受欢迎的文章内容是格局,思维,战略,用人,国学,成功学等等,有忽悠别人的,也有自我忽悠的。经历了太多人,实战了太多事,而立之年,学会...
阅读(91) 评论(0)

Python回归分析五部曲(二)—多重线性回归

基础铺垫 多重线性回归(Multiple Linear Regression) 研究一个因变量与多个自变量间线性关系的方法 在实际工作中,因变量的变化往往受几个重要因素的影响,此时就需要用2个或2个以上的影响因素作为自变量来解释因变量的变化,这就是多重线性回归; 多重线性回归模型 1.模型 y=α+β1x1+β2x2+...+βnxn+ey = α + β_1 x_1 + β...
阅读(82) 评论(0)

Python回归分析五部曲(一)—简单线性回归

回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高; 整体逻辑 回归分析(Regression Analysis)研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3… …)之间的回归模型,来预测因变量y的发展趋向。 回归分析的分...
阅读(259) 评论(0)

Python数据抓取(3) —抓取标题、时间及链接

(一)抓取第一财经数据板块文章 本次分享,jacky将跟大家分享如何将第一财经文章中的标题、时间以及链接抓取出来 1.观察元素抓取位置 网页的原始码很复杂,我们必须找到特殊的元素做抽取,怎么找到特殊的元素呢?使用开发者工具检视每篇文章的分隔发现都以dl-item做区隔,我们可以知道可以透过dl-item提取一个一个的列表,既然知道我们要存储的位置在 dl-item下,我们就可以把dl-item下...
阅读(79) 评论(0)

Python数据抓取(2) —简单网络爬虫的撰写

(一)使用Requests存储网页 Requests是什么?网络资源(URLs)抓取套件 优点?改善urllib2的缺点,让使用者以最简单的方式获取网络资源 可以使用REST操作(POST,PUT,GET,DELETE)存取网络资源 import requests response = requests.get('http://blog.sina.com.cn/lm/stock/') print(r...
阅读(168) 评论(0)

Python数据抓取(1) —数据处理前的准备

数据抓取概要 为什么要学会抓取网络数据?对公司或对自己有价值的数据,80%都不在本地的数据库,它们都散落在广大的网络数据,这些数据通常都伴随着网页的形式呈现,这样的数据我们称为非结构化数据 如果我们能想出办法,把这些非结构化的数据转化为结构化的数据,在跟自己的本地数据库做匹配,做交叉分析,让它们关联起来,从而我们就能提炼出我们需要的有价值的数据。 如何将非结构化的数据转化为结构化的数据呢?必须通过E...
阅读(133) 评论(0)

Python相关分析—一个金融场景的案例实操

哲学告诉我们:世界是一个普遍联系的有机整体,现象之间客观上存在着某种有机联系,一种现象的发展变化,必然受与之关联的其他现象发展变化的制约与影响,在统计学中,这种依存关系可以分为相关关系和回归函数关系两大类,本次分享,jacky将跟您分享如何用python做相关关系,并以真实金融案例为依托,深入浅出,探讨相关分析在实际工作中应用。 基础铺垫 相关系数(correlation coefficient)相...
阅读(135) 评论(0)

决策树算法的Python实现—基于金融场景实操

决策树是最经常使用的数据挖掘算法,本次分享jacky跟你深入浅出,讲透决策树算法 基本概念 决策树(Decision Tree)它通过对训练样本的学习,并建立分类规则,然后依据分类规则,对新样本数据进行分类预测,属于有监督学习。 优点1)决策树易于理解和实现使用者不需要了解很多的背景知识,通过决策树就能够直观形象的了解分类规则; 2)决策树能够同时处理数值型和非数值型数据在相对短的时间内,能够对大型...
阅读(138) 评论(0)

《特征工程三部曲》之三:维度压缩

当特征选择完成之后,就可以直接训练模型了,但是可能由于特征矩阵过大导致计算量大,训练时间长的问题;因此,降低特征矩阵维度,也是必不可少的,主成分分析就是最常用的降维方法,在减少数据集的维度的同时,保持对方差贡献最大的特征,在sklearn中,我们使用PCA类进行主成分分析。 主成分分析(Principal Components Analysis) PCA API有一个参数用于设置主成分的个数:pca...
阅读(1573) 评论(0)

《特征工程三部曲》之二:特征选择

什么特征选择 特征选择 ( Feature Selection )也称特征子集选择( Feature Subset Selection , FSS ) ,或属性选择( Attribute Selection ) ,是指从全部特征中选取一个特征子集,使构造出来的模型更好。 为什么要做特征选择 在机器学习的实际应用中,特征数量往往较多,其中可能存在不相关的特征,特征之间也可能存在相互依赖,容易导致如下的...
阅读(3242) 评论(0)
39条 共2页1 2 下一页 尾页
    个人资料
    • 访问:25113次
    • 积分:655
    • 等级:
    • 排名:千里之外
    • 原创:39篇
    • 转载:0篇
    • 译文:0篇
    • 评论:0条
    文章分类