/*
*算法引入:
*设G=(V,E,w)是连通的无向图,T是图G的一棵最小生成树;
*如果有另一棵树T1,满足不存在树T’,ω(T’)<ω(T1),则称T1是图G的次小生成树;
*
*算法思想:
*邻集的概念:由T进行一次可行交换得到的新的生成树所组成的集合,称为树T的邻集,记为N(T);
*设T是图G的最小生成树,如果T1满足ω(T1)=min{ω(T’)|T’∈N(T)},则T1是G的次小生成树;
*首先先求该图的最小生成树T,时间复杂度O(Vlog2V+E);
*然后,求T的邻集中权值和最小的生成树,即图G 的次小生成树;
*如果只是简单的枚举,复杂度很高;
*首先枚举两条边的复杂度是O(VE),再判断该交换是否可行的复杂度是O(V),则总的时间复杂度是O(V2E);
*分析可知,每加入一条不在树上的边,总能形成一个环,只有删去环上的一条边,才能保证交换后仍然是生成树;
*而删去边的权值越大,新得到的生成树的权值和越小,可以以此将复杂度降为O(VE);
*更好的方法:首先做一步预处理,求出树上每两个结点之间的路径上的权值最大的边;
*然后枚举图中不在树上的边,有了预处理,就可以用O(1)的时间得到形成的环上的权值最大的边;
*预处理:因为是一棵树,只要简单的BFS即可,预处理所要的时间复杂度为O(V2);
*
*算法测试:
*HDU4081(Qin Shi Huang's National Road System)(2011 Asia Beijing Regional Contest)
*
*题目大意:
*有n个城市,秦始皇要修用n-1条路把它们连起来,要求从任一点出发,都可以到达其它的任意点,秦始皇希望这所有n-1条路长度之和最短;
*然后徐福突然有冒出来,说是他有魔法,可以不用人力、财力就变出其中任意一条路出来;
*秦始皇希望徐福能把要修的n-1条路中最长的那条变出来,但是徐福希望能把要求的人力数量最多的那条变出来;
*对于每条路所需要的人力,是指这条路连接的两个城市的人数之和;
*秦始皇给出了一个公式A/B,A是指要徐福用魔法变出的那条路所需人力,
*B是指除了徐福变出来的那条之外的所有n-2条路径长度之和,选使得A/B值最大的那条;
*
*算法分析:
*为了使的A/B值最大,首先是需要是B尽量要小,所以可先求出n个城市的最小生成树;
*然后就是决定要选择哪一条边用徐福的魔法来变;
*可以枚举每一条边,假设最小生成树的值是Mst,而枚举的那条边长度是G[i][j],
*如果这一条边已经是属于最小生成树上的,那么最终式子的值是A/(Mst-G[i][j]);
*如果这一条不属于最小生成树上的,那么添加上这条边,就会有n条边,那么就会使得有了一个环;
*为了使得它还是一个生成树,就要删掉环上的一条边,为了让生成树的权值尽量小,那么就要删掉除了加入的那条边以外,权值最大的那条路径;
*假设删除的那个边的权值是path[i][j],那么就是A/(Mst-path[i][j]);
*解这题的关键也在于怎样求出次小生成树,具体实现时,更简单的方法是从每个节点i遍历整个最小生成树;
*定义path[i][j]为从i到j的路径上最大边的权值,遍历图求出path[i][j]的值;
*然后对于添加每条不在最小生成树中的边(i,j),新的生成树权值之和就是Mst+G[i][j]–path[i][j],其最小值则为次小生成树;
**/
#include<iostream>
#include<string>
#include<cstdio>
#include<map>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int INF=99999999;
const int N=1010;
struct point
{
int x,y;
} p[N];
double G[N][N],dist[N];
double path[N][N];//从i到j的路径上最大边的权值
int population[N];//每个城市的人口数
int pre[N],visit[N];
bool used[N][N];//边是否在该MST中
int n;
inline double Dist(point v1,point v2)
{
return sqrt(double(v1.x-v2.x)*(v1.x-v2.x)+double(v1.y-v2.y)*(v1.y-v2.y));
}
double Prim()
{
double Mst=0;
memset(visit, 0, sizeof(visit));
memset(used, 0, sizeof(used));
memset(path, 0, sizeof(path));
visit[1]=1;
for(int i=1; i<=n; ++i)
{
dist[i] = G[1][i];
pre[i] = 1;
}
for(int i=1; i<n; ++i)
{
int u=-1;
for(int j=1; j<=n; ++j)
{
if(!visit[j])
{
if(u==-1||dist[j]<dist[u])
u=j;
}
}
used[u][pre[u]]=used[pre[u]][u] = true;//加入MST
Mst+=G[pre[u]][u];
visit[u]=1;
for(int j=1; j<=n; ++j)
{
if(visit[j]&&j!=u)//求从u到j的路径上最大边的权值
{
path[u][j]=path[j][u]=max(path[j][pre[u]], dist[u]);
}
if(!visit[j])
{
if(dist[j]>G[u][j])//更新相邻顶点的dist
{
dist[j]=G[u][j];
pre[j]=u;
}
}
}
}
return Mst;
}
int main()
{
//freopen("C:\\Users\\Administrator\\Desktop\\kd.txt","r",stdin);
int tcase;
scanf("%d",&tcase);
while(tcase--)
{
scanf("%d",&n);
memset(G,0,sizeof(G));
for(int i=1; i<=n; ++i)
scanf("%d%d%d",&p[i].x,&p[i].y,&population[i]);
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
{
if(i!=j)
G[i][j]=Dist(p[i],p[j]);
}
}
double Mst=Prim();
double res=-1;
for(int i=1; i<=n; ++i)
{
for(int j=1; j<=n; ++j)
if(i!=j)
{
if(used[i][j])
res=max(res,(population[i]+population[j])/(Mst-G[i][j]));
else
res=max(res,(population[i]+population[j])/(Mst-path[i][j]));
}
}
printf("%.2f\n",res);
}
return 0;
}
次小生成树
最新推荐文章于 2022-02-19 22:33:39 发布