算法题解-图论-最小生成树
Jarily
这个作者很懒,什么都没留下…
展开
-
UVA10766(Organising the Organisation)生成树计数-Matrix-Tree定理
/* *题目地址: *http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1707; * *题目大意: *Jimmy在公司里负责人员的分级工作,他最近遇到了一点小麻烦; *为了提高公司工作的效率,董事会决定对所有的员工重新分级; *即除了一个总经理原创 2013-05-08 20:19:40 · 2352 阅读 · 0 评论 -
次小生成树
/* *算法引入: *设G=(V,E,w)是连通的无向图,T是图G的一棵最小生成树; *如果有另一棵树T1,满足不存在树T’,ω(T’)<ω(T1),则称T1是图G的次小生成树; * *算法思想: *邻集的概念:由T进行一次可行交换得到的新的生成树所组成的集合,称为树T的邻集,记为N(T); *设T是图G的最小生成树,如果T1满足ω(T1)=min{ω(T’)|T’∈N(T)},则T原创 2013-05-04 15:37:59 · 4551 阅读 · 0 评论 -
生成树计数-Matrix-Tree定理
/* *算法引入: *给定一个无向图G,求它生成树的个数t(G); * *算法思想: *(1)G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0;当i=j时,dij等于vi的度数; *(2)G的邻接矩阵A[G]是一个n*n的矩阵,并且满足:如果vi,vj之间有边直接相连,则aij=1,否则为0; *定义图G的Kirchhoff矩阵C[G]为C[G]=D[G]-A原创 2013-05-08 17:12:24 · 5652 阅读 · 0 评论 -
最小k度限制生成树
/*************************************************算法引入:最小k度限制生成树,就是指有特殊的某一点的度不能超过k时的最小生成树;如果T是G的一个生成树且dT(v0)=k,则称T为G的k度限制生成树;G中权值和最小的k度限制生成树称为G的最小k度生成树;算法思想:设特殊的那点为v0,先把v0删除,求出剩下连通图的所有最小生成树;假如原创 2013-04-09 20:48:29 · 4171 阅读 · 1 评论 -
PKU1679(The Unique MST)判断最小生成树的唯一性-次小生成树
/* *题目大意: *给出一个连通无向图,判断它的最小生成树是否唯一; *如果唯一,输出生成树的大小,否则输出"Not Unique!"; * *算法思想: *本题可以尝试求与最小生成树权值相等的树是否存在; *但是更好的思路是直接求次小生成树,如果次小生成树等于最小生成树; *则说明最小生成树不唯一,否则最小生成树一定是唯一的; * *次小生成树的求法详见http://blo原创 2013-05-10 20:43:02 · 4081 阅读 · 0 评论 -
BZOJ1016([JSOI2008]最小生成树计数)Kruskal+Matrix_Tree定理
/* *题目地址: *http://www.lydsy.com/JudgeOnline/problem.php?id=1016 * *题目大意: *给出一个简单无向加权图,求这个图中有多少个不同的最小生成树; *由于不同的最小生成树可能很多,所以只需输出方案数对31011的模就可以了; * *算法思想: *Kruskal+Matrix_Tree定理; * *先按照任意顺序对等原创 2013-05-08 21:13:10 · 5384 阅读 · 0 评论 -
最小生成树计数-Kruskal+Matrix_Tree定理
/* *算法引入: *给定一个含有N个结点M条边的无向图,求它最小生成树的个数t(G); * *算法思想: *抛开“最小”的限制不看,如果只要求求出所有生成树的个数,是可以利用Matrix-Tree定理解决的; *Matrix-Tree定理此定理利用图的Kirchhoff矩阵,可以在O(N3)时间内求出生成树的个数; * *kruskal算法: *将图G={V,E}中的所有边按照原创 2013-05-08 20:55:43 · 10739 阅读 · 0 评论 -
PKU3522(Slim Span)-求差值最小的生成树
要求一颗生成树,使得其最大边与最小边的差值是所有生成树中最小原创 2013-09-25 13:46:20 · 1430 阅读 · 0 评论