Tensorboard:
如何更直观的观察数据在神经网络中的变化,或是已经构建的神经网络的结构。上一篇文章说到,可以使用matplotlib第三方可视化,来进行一定程度上的可视化。然而Tensorflow也自带了可视化模块Tensorboard,并且能更直观的看见整个神经网络的结构。
上面的结构图甚至可以展开,变成:
使用:
结构图:
with tensorflow .name_scope(layer_name):直接使用以上代码生成一个带可展开符号
with tf.name_scope(layer_name):
with tf.name_scope('weights'):节点一般是变量或常量,需要加一个“name=‘’”参数,才会展示和命名,如:
with tf.name_scope('weights'):
Weights = tf.Variable(tf.random_normal([in_size,out_size]))
结构图符号及意义:

本文介绍了如何使用Tensorflow自带的可视化工具Tensorboard,详细阐述了Tensorboard的使用步骤,并提供了具体的项目代码示例,帮助读者理解并掌握神经网络训练过程的可视化技巧。
最低0.47元/天 解锁文章
9123

被折叠的 条评论
为什么被折叠?



