splay 常数优化

今天所给的这些常数优化,可以使我原来所写的 splay 变快至少 1.5 倍。

1.在 rotate 过程中不需要下放标记。显然,在找到点之前,就一定会有自上而下的过程。在这里下放标记即可。

2.在 rotate 过程中不 update 当前节点。显然,只需要在 splay 到根之后 update 即可。

3.尽量使用自己 define 的 max,swap 之类的为所用很多的函数,大数据下稍有改变即可快 0.2 秒。

4.插入之后 splay 所插入的最低深度的点。如果将一条链 splay 成四分之一以下的深度,常数将巨大优化。

通过以上 4 个优化,我将 3.8 秒的大数据(sequence 维护数列)压到了 2 秒以下。

Code :

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <climits>
#include <iostream>
#include <algorithm>
using namespace std;

#define inf 1005
#define maxn 600005
#define MAX(a, b) ({int _ = a, __ = b; _ > __ ? _ : __;})
#define Swap(p, q) ({node * o = p; p = q; q = o;})
#define swaP(a, b) ({int _ = a; a = b; b = _;})

struct node{
	node * pt, * ch[2];
	int size, data, sum, ls, rs, ms;
	bool rev, alt;
} null[maxn], * ve[maxn], ** total, * root, * head, * tail;

node * newnode(node * fa, int da)
{
	node * p = * (total --);
	if (p->ch[0] && p->ch[0] != null) * (++ total) = p->ch[0];
	if (p->ch[1] && p->ch[1] != null) * (++ total) = p->ch[1];
	p->pt = fa, p->ch[0] = p->ch[1] = null;
	p->size = 1, p->data = p->sum = p->ls = p->rs = p->ms = da;
	return p->rev = p->alt = 0, p;
}

node * pushdown(node * p)
{
	if (p == null) return null;
	if (p->alt)
		{
			p->ch[0]->alt = 1, p->ch[0]->data = p->data;
			p->ch[1]->alt = 1, p->ch[1]->data = p->data;
			p->sum = p->size * p->data;
			p->ls = p->rs = p->ms = (p->data < 0 ? p->data : p->sum), p->alt = 0;
		}
	if (p->rev)
		{
			p->ch[0]->rev = ! p->ch[0]->rev;
			p->ch[1]->rev = ! p->ch[1]->rev;
			Swap(p->ch[0], p->ch[1]), swaP(p->ls, p->rs), p->rev = 0;
		}
	return p;
}

node * update(node * p)
{
	if (p == null) return null;
	pushdown(p->ch[0]), pushdown(p->ch[1]);
	p->size = p->ch[0]->size + 1 + p->ch[1]->size;
	p->sum = p->ch[0]->sum + p->data + p->ch[1]->sum;
	p->ls = MAX(p->ch[0]->ls, p->ch[0]->sum + p->data);
	p->ls = MAX(p->ls, p->ch[0]->sum + p->data + p->ch[1]->ls);
	p->rs = MAX(p->ch[1]->rs, p->ch[1]->sum + p->data);
	p->rs = MAX(p->rs, p->ch[1]->sum + p->data + p->ch[0]->rs);
	p->ms = MAX(p->data, max(p->ch[0]->ms, p->ch[1]->ms));
	p->ms = MAX(p->ms, p->ch[0]->rs + p->data + p->ch[1]->ls);
	p->ms = MAX(p->ms, max(p->ch[0]->rs, p->ch[1]->ls) + p->data);
	return p;
}

void rotate(node * p)
{
	node * q = p->pt;
	bool flag = p == q->ch[0];
	p->ch[flag]->pt = q, q->ch[! flag] = p->ch[flag], p->ch[flag] = q;
	q->pt->ch[q == q->pt->ch[1]] = p, p->pt = q->pt, update(q)->pt = p;
}

node * splay(node * p, node * tar)
{
	while (p->pt != tar)
		if (p->pt->pt == tar) rotate(p);
		else if ((p == p->pt->ch[0]) xor (p->pt == p->pt->pt->ch[0])) rotate(p), rotate(p);
		else rotate(p->pt), rotate(p);
	return update(p);
}

node * getpos(int rank)
{
	node * p = pushdown(root);
	int now = p->ch[0]->size + 1;
	while (now != rank)
		if (now < rank)
			p = pushdown(p->ch[1]), now += p->ch[0]->size + 1;
		else
			p = pushdown(p->ch[0]), now -= p->ch[1]->size + 1;
	return p;
}

node * getseg(int l, int r)
{
	root = splay(getpos(l), null);
	splay(getpos(r + 2), root);
	return update(root);
}

int n, m, pos, tot, c, a[maxn];
char str[inf];

void prepare()
{
	scanf("%d%d", & n, & m), * ve = null;
	for (int i = 1; i <= n; ++ i)
		scanf("%d", & a[i]), ve[i] = null + i;
	for (int i = n + 1; i < maxn; ++ i)
		ve[i] = null + i; total = ve + maxn - 1;
	null->ls = null->rs = null->ms = - inf;
	root = head = newnode(null, 0), root->size = 2;
	root->ch[1] = tail = newnode(root, 0);
}

int main()
{
	freopen("sequence.in", "r", stdin);
	freopen("sequence.out", "w", stdout);
  
	prepare();
	pos = 0, tot = n;
	root = splay(getpos(pos + 1), null);
	node * p = newnode(root, a[tot]);
	p->ch[1] = root->ch[1], p->ch[1]->pt = p, root->ch[1] = p;
	while (-- tot) p = p->ch[0] = newnode(p, a[tot]);
	root = splay(p, null);
	while (scanf("%s", str), m --)
		if (str[0] == 'I')
			{
				scanf("%d%d", & pos, & tot);
				for (int i = 1; i <= tot; ++ i)
					scanf("%d", & a[i]);
				root = splay(getpos(pos + 1), null);
				node * p = newnode(root, a[tot]);
				p->ch[1] = root->ch[1], p->ch[1]->pt = p, root->ch[1] = p;
				while (-- tot) p = p->ch[0] = newnode(p, a[tot]);
				root = splay(p, null);
			}
		else if (str[0] == 'D')
			{
				scanf("%d%d", & pos, & tot);
				node * p = getseg(pos, pos + tot - 1);
				* (++ total) = p->ch[1]->ch[0], p->ch[1]->ch[0] = null;
				update(root->ch[1]), update(root);
			}
		else if (str[0] == 'M' and str[2] == 'K')
			{
				scanf("%d%d%d", & pos, & tot, & c);
				node * p = getseg(pos, pos + tot - 1);
				p->ch[1]->ch[0]->alt = 1, p->ch[1]->ch[0]->data = c;
				pushdown(root->ch[1]->ch[0]), update(root->ch[0]), update(root);
			}
		else if (str[0] == 'R')
			{
				scanf("%d%d", & pos, & tot);
				node * p = getseg(pos, pos + tot - 1);
				p->ch[1]->ch[0]->rev = ! p->ch[1]->ch[0]->rev;
				pushdown(root->ch[1]->ch[0]), update(root->ch[0]), update(root);
			}
		else if (str[0] == 'G')
			{
				scanf("%d%d", & pos, & tot);
				node * p = getseg(pos, pos + tot - 1);
				printf("%d\n", p->ch[1]->ch[0]->sum);
			}
		else
			{
				root = splay(head, null), splay(tail, root);
				printf("%d\n", root->ch[1]->ch[0]->ms);
			}
	
	return 0;
}

<think>嗯,用户想了解FHQ-Treap的空间优化方法。首先,我得回忆一下FHQ-Treap的基本结构。FHQ-Treap也就是非旋转Treap,它通过分裂和合并操作来维护平衡,不需要旋转,所以代码相对简单,还能支持可持久化。那空间优化方面,用户可能遇到节点过多导致内存占用大的问题,需要找优化方法。 根据引用[2],FHQ-Treap相比Splay虽然常数大,但实现容易,还能可持久化。可持久化通常会占用更多空间,但用户问的是空间优化,所以可能需要减少节点数量或重用节点。 首先想到的是节点复用。比如删除节点时,不是立即释放内存,而是加入一个缓存池,需要时再取出。这样可以避免频繁申请内存的开销,尤其在多次插入删除的情况下。这种方法在很多数据结构中都有应用,比如内存池技术。 然后是动态分配策略。比如根据操作频率调整节点预分配的数量,高频使用时多分配,低频时减少。不过具体如何实现可能需要进一步思考,比如初始分配一定数量的节点,当不够时再批量申请,而不是每次插入都申请新节点。 还有延迟回收技术。删除节点后不立即回收,而是标记为无效,后续操作中复用。这需要维护一个无效节点列表,并在需要时进行清理或复用。不过要注意避免内存泄漏,可能需要定期清理。 另外,引用[5]提到使用虚节点来优化合并操作,虽然主要是针对并查集,但或许可以借鉴。比如在FHQ-Treap中,是否有类似虚节点的设计,减少结构中的辅助节点数量?或者通过某些方式共享部分结构,比如持久化时的路径复用,但用户可能指的是常规优化而非可持久化场景。 还有,合并操作的优化可能减少临时节点的使用。比如在合并过程中尽量复用现有节点,而不是创建中间节点。不过这可能需要调整合并算法的实现细节。 还需要考虑Treap本身的特性,比如优先级。如果优先级生成策略可以优化,比如使用哈希或更紧凑的存储方式,减少存储开销。例如,使用较小的数据类型存储优先级,或者用伪随机数生成器避免存储全部优先级。 另外,内存对齐和紧凑的节点结构设计也很重要。比如将节点的键、优先级、左右子指针紧凑排列,减少内存碎片,或者使用更小的数据类型。例如,如果键的范围允许,使用int而非long来存储。 可能还需要分析FHQ-Treap的具体实现,比如每个节点通常包含哪些字段。通常有key, priority, left, right,可能还有size。如果size可以动态计算而不存储,但这样会影响性能,需要权衡。 总结可能的优化点: 1. 节点复用与缓存池 2. 延迟回收和批量分配 3. 紧凑的节点结构设计 4. 动态调整预分配策略 5. 优化优先级存储 6. 合并/分裂时的临时节点复用 需要将这些方法具体化,给出实际的技巧,比如如何实现缓存池,如何设计节点结构等。同时要确保这些方法适用于FHQ-Treap的特性,比如非旋转和分裂合并操作。 比如,节点池的实现:预先分配一个节点数组,用栈或队列管理空闲节点。插入时从池中取节点,删除时将节点放回池中。这样减少内存分配次数,提高效率,同时控制内存占用。 紧凑结构方面,可以用union或者位域来压缩字段,但可能增加访问复杂度。或者根据具体情况选择合适的数据类型,比如用32位整数代替64位。 优先级生成方面,如果使用随机数,可以存储种子而不是每个节点的优先级,但Treap需要每个节点有唯一的优先级,所以可能不可行。或者使用哈希函数生成优先级,减少存储空间,比如用较低的位数。 延迟回收的话,维护一个删除列表,当需要新节点时先检查列表,有则复用,无则新建。但要注意节点信息的正确重置。 可能还需要注意可持久化时的优化,但用户的问题可能是一般情况下的空间优化,所以重点放在常规方法上。 最后,给出具体的优化技巧,结合实现示例,比如代码中的节点池管理,或者结构体设计。同时引用相关参考资料,比如引用[2]提到FHQ可用于可持久化,可能涉及节点复用;引用[5]的虚节点思路是否有借鉴意义。</think>### FHQ-Treap 空间优化技巧详解 FHQ-Treap(非旋转 Treap)通过分裂与合并操作实现平衡树功能,其非旋特性使得可持久化成为可能[^2]。以下是针对空间优化的具体技巧及实现方法: --- #### 1. **节点复用与缓存池** **核心思路**:避免频繁的内存分配/释放,通过预分配和复用节点减少系统调用开销。 - **实现方法**: - **预分配节点池**:初始化时批量申请内存(如数组或链表),维护空闲节点列表。 - **删除节点缓存**:删除操作时将节点标记为“无效”并加入缓存池,插入时优先使用缓存节点。 ```python class NodePool: def __init__(self, chunk_size=1024): self.free_list = [] self.allocate_chunk(chunk_size) def allocate_chunk(self, size): new_nodes = [Node() for _ in range(size)] self.free_list.extend(new_nodes) def get_node(self): if not self.free_list: self.allocate_chunk() # 按需扩容 return self.free_list.pop() def recycle_node(self, node): node.left = node.right = None self.free_list.append(node) ``` --- #### 2. **延迟回收与批量清理** **应用场景**:高频插入/删除操作中,减少即时回收的开销。 - **优化策略**: - 标记节点为“逻辑删除”(如设置 `deleted` 标志),定期批量清理。 - 合并操作时跳过无效节点,减少物理删除次数[^3]。 --- #### 3. **紧凑型节点结构设计** 通过压缩字段节省内存: - **数据类型优化**:根据数据范围选择最小类型(如 `int32` 代替 `int64`)。 - **合并字段**:使用联合体(Union)存储互斥数据(如可持久化版本号与子指针)。 ```c++ struct CompactNode { int32_t key; uint16_t priority; // 使用更小的随机数范围 union { struct { CompactNode *left, *right; }; int32_t version; // 可持久化场景下的版本号 }; }; ``` --- #### 4. **动态优先级生成** **避免存储显式优先级**:通过哈希函数生成优先级,减少存储开销。 - **公式**:`priority = hash(key) % MAX_PRIORITY` - **优点**:无需额外字段存储优先级,但需保证优先级分布近似随机性。 --- #### 5. **可持久化场景优化** **虚节点技术**:参考并查集虚点思想[^5],将频繁修改的子树映射到独立内存区域。 - **实现**:为每个节点绑定虚节点,合并/分裂操作仅修改虚节点,减少真实节点的变更次数。 --- #### 6. **合并/分裂操作优化** 减少临时节点生成: - **原地修改**:合并时直接调整指针而非创建新节点。 - **栈式分裂**:分裂过程中复用中间节点(需严格保证线程安全)。 --- ### 关键权衡与注意事项 | 优化方法 | 优点 | 缺点 | |------------------|--------------------------|-------------------------------| | 节点池 | 减少内存碎片 | 预分配可能浪费内存 | | 延迟回收 | 降低高频操作开销 | 内存占用短期增加 | | 紧凑结构 | 节省单节点空间 | 代码复杂度增加 | | 动态优先级 | 无需存储优先级字段 | 哈希冲突可能影响平衡性 | --- ### 相关问题 1. **如何验证节点池优化后的内存使用效率?** 2. **FHQ-Treap 在可持久化场景中如何避免内存泄漏?** 3. **紧凑节点结构对分裂/合并操作性能有何影响?** : FHQ-Treap 的非旋特性使其适合可持久化优化。 : 延迟回收技术可借鉴滑动窗口的复用思想。 [^5]: 虚节点技术常用于减少真实数据结构的修改频率。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值