【数论】线性筛素数,线性筛欧拉函数,求前N个数的约数个数

本文介绍了线性筛素数的基本算法,并利用该算法实现线性时间求欧拉函数,同时还探讨了求解前N个数的约数个数的方法,涉及数论中的性质和计算技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先来最基本的线性筛素数,以后的算法其实都是基于这个最基本的算法:

利用了每个合数必有一个最小素因子,每个合数仅被它的最小素因子筛去正好一次,所以是线性时间。
代码中体现在: if(i%prime[j]==0) break;
----------------------------------------------------------------------- 我是低调的分割线 ------------------------------------------------------------------------------------------
然后可以利用这种线性筛法求欧拉函数,需要用到以下几个性质:
//(1) 若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;
//(2) 若(N%a==0 && (N/a

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值