线性筛求欧拉函数

对于欧拉函数的求法最常用的有两方式

  1. 试除法
  2. 线性筛法

试除法比较简单,这里就不解释了。

这里主要介绍线性筛法求欧拉函数

我们先了解什么是欧拉函数
1 ∼ N 中与 N 互质的数的个数被称为欧拉函数,记为 φ ( N ) 。 1 \sim N 中与 N 互质的数的个数被称为欧拉函数,记为\varphi(N)。 1N中与N互质的数的个数被称为欧拉函数,记为φ(N)
对于一个整数 N N N:

  1. 如果 N N N 为素数的话:那么在小于等于N中,与 N N N 互质的为 1 ∼ N − 1 1 \sim N-1 1N1,就是 N − 1 N-1 N1
  2. 如果 N N N 不为素数的话:那么我们可以用到一个积性函数定理 f ( n ∗ m ) = f ( n ) ∗ f ( m ) f(n * m) = f(n) * f(m) f(nm)=f(n)f(m),那么就可以进行拆分计算。

那么我们就可以用素数筛的板子,然后进行加入一些语句就可以实现线性筛求欧拉函数。
先说区别区别点吧:
第一个:

if(!used[i])
 {
     phis[i] = i-1;
     primes[++cnt] = i;
 }

第一个可以由上述 1 可以解释出来。
第二个:

if(i % primes[j] == 0)
{
    phis[i * primes[j]] = primes[j] * phis[i];
    break;
}
phis[i * primes[j]] = (primes[j] - 1) * phis[i];

这里就是素数筛的板子,然后加了点东西。

  1. 第一个语句中:如果 i m o d    p r i m e s [ j ] i \mod primes[j] imodprimes[j] 为 0 的话,那么 i i i 包括了 m ( m = i ∗ p r i m e s [ j ] ) m(m = i * primes[j]) m(m=iprimes[j]) 的所有的质因子,那么 φ ( m ) = p r i m e s [ j ] ∗ φ ( i ) \varphi(m) = primes[j] * \varphi(i) φ(m)=primes[j]φ(i)
    证明:因为 i i i 包括了 m m m 的所有质因子,所以 φ ( m ) = m ∗ ∏ k = 1 s ( 1 − 1 p k ) = p r i m e s [ j ] ∗ i ∗ ∏ k = 1 s ( 1 − 1 p k ) = p r i m e s [ j ] ∗ φ ( i ) \varphi(m) = m * \prod_{k=1}^{s}(1-\frac{1}{p_k}) = primes[j] * i * \prod_{k=1}^{s}(1-\frac{1}{p_k}) = primes[j] * \varphi(i) φ(m)=mk=1s(1pk1)=primes[j]ik=1s(1pk1)=primes[j]φ(i)
    例如: φ ( 28 ) = 2 ∗ φ ( 14 ) \varphi(28) = 2 * \varphi(14) φ(28)=2φ(14)
  2. 第二个语句中,如果 i m o d    p r i m e s [ j ] i \mod primes[j] imodprimes[j] 不为 0 ,那么两个数互质,又通过上面的性质1得到 φ ( m ) = ( p r i m e s [ j ] − 1 ) ∗ φ ( i ) \varphi(m) = (primes[j]-1) * \varphi(i) φ(m)=(primes[j]1)φ(i)

下面就是代码环节,结合素数筛更好理解。
对应例题:
洛谷:T349752 筛法求欧拉函数

#include<bits/stdc++.h>
#define int long long
using namespace std;

const int N = 1e6 + 5;

int primes[N],used[N],cnt; // 素数筛的变量
int phis[N];  // 定义的是每个整数对应的欧拉值是多少。
void phi(int x)
{
    cnt = 0;
    phis[1] = 1;
    for(int i = 2; i <= x; i++)
    {
        if(!used[i])
        {
            phis[i] = i-1;
            primes[++cnt] = i;
        }
        for(int j = 1; i * primes[j] <= x; j++)
        {
            used[i * primes[j]] = true;
            if(i % primes[j] == 0)
            {
                phis[i * primes[j]] = primes[j] * phis[i];
                break;
            }
            phis[i * primes[j]] = (primes[j] - 1) * phis[i];
        }
    }
}

void solve()
{
    int n;
    cin >> n;
    phi(n);
    long long res = 0;
    for(int i =1 ; i <= n; i++)
    {
        res += phis[i];
    }
    cout << res << endl;
}

signed main ()
{
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    int T = 1;
//    cin >> T;
    while(T--)
        solve();
    return 0;
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值