高斯消元解概率动态规划

原创 2016年05月30日 16:48:47

@(E ACMer)

题目抽象:
一个长度为100的由格子组成的路,你开始在1号格子,求你走到100号格子的期望步数?
行走规则如下:
- 你有一个六面的刻有数字[1,6]的等概率骰子,每次抛出骰子,上面显示的数字就是你走的步数。
- 但是有一些类似(x,y)的规则表示:你一旦跳到了x号格子,你就会瞬间走回y号格子,且这个跳跃不算做步数。(注意这里的x可能小于y)。

分析
jump(i)表示:从i会立即跳跃到jump(i),对于没有跳跃规则的格子jum(i)==i,令f(i):表示从i走到100的期望步数,我们的目的就是求f(1)
如果y>=x,那么这个问题很好求解:

f(i)=6+j<=6 and i+j<=100j=1f(jump(i+j)+tf(i)6
if (t>94) t=(6100i)  else  t=0

直接动态规划求解即可。
但是这里y<x的情况存在,就会出现循环的情况,无法递推。我们只能列出含有100个未知变量的100个概率方程,然后用解线性方程组的高斯消元方法求解。
构造方程的其中一项类似:
6xixi+1xi+2....xi+6=6

复杂度主要是高斯消元的复杂度O(1003)


code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  " 
#define pl(x) cout << #x << ": " << x << endl;
const int maxn = 103;
const double eps = 1e-9;

double a[maxn][maxn], ans[maxn];
int jump[maxn << 1];


void gauss(void) {
    int i, j, t, k;
    for (i = 1; i <= 100; i++) {
        t = i;
        for (j = i + 1; j <= 100; j++) if (a[t][i] < a[j][i]) t = j;
        if (t != i) for (j = 1; j <= 101; j++) swap(a[i][j], a[t][j]);
        if (fabs(a[i][i]) < eps) continue;
        for (j = i + 1; j <= 100; j++) {
            if (fabs(a[j][i]) > eps) {
                double tt = a[j][i] / a[i][i];
                for (k = i; k <= 101; k++) a[j][k] -= a[i][k] * tt;
            }
        }
    }
    for (i = 100; i >= 1; i--) {
        for (j = 100; j > i; j--) a[i][101] -= a[i][j] * ans[j];
        if (fabs(a[i][i] > eps)) ans[i] = a[i][101] / a[i][i];
        if (fabs(a[i][i]) < eps) ans[i] = 0.0;
    }
}

void build_a(void) {
    memset(ans, 0.0, sizeof(ans));
    memset(a, 0.0, sizeof(a));
    for (int i = 1; i <= 100; i++) {
        a[i][i] = a[i][101] = 6;
        for (int j = 1; j <= 6; j++) {
            if (i + j > 100) a[i][i] -= 1;
            else a[i][jump[i + j]] += -1;
        }
    }
}

int main()
{
#ifdef LOCAL 
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif
    int T, N;
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas++) {
        scanf("%d", &N);
        for (int i = 1; i <= 100; i++) jump[i] = i;
        for (int i = 0; i < N; i++) {
            int x, y;
            scanf("%d%d", &x, &y);
            jump[x] = y;
        }
        build_a();
        gauss();
        printf("Case %d: %.15f\n", cas, ans[1]);
    }
    return 0;
}
版权声明:本文为博主原创文章,转载请注明作者:jibancanyang。

高斯消元法解01异或方程组(附poj 1222题解)

const int maxn=50; //有equ个方程,var个变元。增广矩阵行数为equ,列数为var+1 int equ,var; int a[maxn][maxn]; //增广矩阵 int x...
  • qq547276542
  • qq547276542
  • 2015年11月12日 23:16
  • 3727

高斯消元法解方程组求整数解

#include #include #include using namespace std; const int maxn = 105;   int equ, var; // 有e...
  • zuihoudebingwen
  • zuihoudebingwen
  • 2012年08月26日 10:24
  • 3357

用高斯消元法解异或方程组

异或方程组就是形如这个样子的方程组:M[0][0]x[0]^M[0][1]x[1]^…^M[0][N-1]x[N-1]=B[0]M[1][0]x[0]^M[1][1]x[1]^…^M[1][N-1]x...
  • zhuichao001
  • zhuichao001
  • 2010年04月01日 11:47
  • 6356

POJ 2947 高斯消元--判断一解多解无解

又是偷来的代码,但是第一道高斯消元,纪念下 知道每条式子的结果取模后的值,求方程组,这不同于一般的高斯消元,而且答案必须为整数并在一定区间内 1.由于是整数要用到gcd; 2.解的判断: 有解的情况都...
  • Jackyguo1992
  • Jackyguo1992
  • 2013年04月23日 18:11
  • 1424

POJ 2947 Widget Factory(高斯消元解同余方程组)

传送门Widget FactoryTime Limit: 7000MSMemory Limit: 65536KTotal Submissions: 5663Accepted: 1961Descript...
  • qingshui23
  • qingshui23
  • 2016年09月12日 11:14
  • 767

高斯消元-解求精技术(Python)

高斯消元-解求精技术(Python) 内有错误,欢迎大佬指正!
  • lukkk6
  • lukkk6
  • 2017年11月26日 21:59
  • 82

poj 1222 高斯消元详解

题意 有一个5 * 6的矩阵,每个位置表示灯,1表示灯亮,0表示灯灭。 然后如果选定位置i,j点击,则位置i,j和其上下左右的灯的状态都会反转。 现在要你求出一个5 * 6的矩阵,1表示这个灯被...
  • u013508213
  • u013508213
  • 2015年08月03日 22:34
  • 2368

HDU 5833 Zhu and 772002 高斯消元解异或方程组,求自由元个数,bitset压位

Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
  • just_sort
  • just_sort
  • 2017年03月04日 16:54
  • 620

关于高斯消元求期望的个人理解

看了一天的高斯消元求期望。 但是貌似因为自己的概率论学的很差,所以总结了一套自己独特的...
  • wdcjdtc
  • wdcjdtc
  • 2014年07月29日 18:50
  • 664

[BZOJ3640]JC的小苹果(概率dp+高斯消元)

题目描述传送门题解设f(i,j)表示血量为i,走到j时的概率 一个比较显然的式子是f(i,j)=∑(j,v)∈Ef(i+a(j),v)d(v)f(i,j)=\sum\limits_{(j,v)\in...
  • Clove_unique
  • Clove_unique
  • 2017年02月09日 21:54
  • 772
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:高斯消元解概率动态规划
举报原因:
原因补充:

(最多只允许输入30个字)