高斯消元解概率动态规划

原创 2016年05月30日 16:48:47

@(E ACMer)

题目抽象:
一个长度为100的由格子组成的路,你开始在1号格子,求你走到100号格子的期望步数?
行走规则如下:
- 你有一个六面的刻有数字[1,6]的等概率骰子,每次抛出骰子,上面显示的数字就是你走的步数。
- 但是有一些类似(x,y)的规则表示:你一旦跳到了x号格子,你就会瞬间走回y号格子,且这个跳跃不算做步数。(注意这里的x可能小于y)。

分析
jump(i)表示:从i会立即跳跃到jump(i),对于没有跳跃规则的格子jum(i)==i,令f(i):表示从i走到100的期望步数,我们的目的就是求f(1)
如果y>=x,那么这个问题很好求解:

f(i)=6+j<=6 and i+j<=100j=1f(jump(i+j)+tf(i)6
if (t>94) t=(6100i)  else  t=0

直接动态规划求解即可。
但是这里y<x的情况存在,就会出现循环的情况,无法递推。我们只能列出含有100个未知变量的100个概率方程,然后用解线性方程组的高斯消元方法求解。
构造方程的其中一项类似:
6xixi+1xi+2....xi+6=6

复杂度主要是高斯消元的复杂度O(1003)


code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  " 
#define pl(x) cout << #x << ": " << x << endl;
const int maxn = 103;
const double eps = 1e-9;

double a[maxn][maxn], ans[maxn];
int jump[maxn << 1];


void gauss(void) {
    int i, j, t, k;
    for (i = 1; i <= 100; i++) {
        t = i;
        for (j = i + 1; j <= 100; j++) if (a[t][i] < a[j][i]) t = j;
        if (t != i) for (j = 1; j <= 101; j++) swap(a[i][j], a[t][j]);
        if (fabs(a[i][i]) < eps) continue;
        for (j = i + 1; j <= 100; j++) {
            if (fabs(a[j][i]) > eps) {
                double tt = a[j][i] / a[i][i];
                for (k = i; k <= 101; k++) a[j][k] -= a[i][k] * tt;
            }
        }
    }
    for (i = 100; i >= 1; i--) {
        for (j = 100; j > i; j--) a[i][101] -= a[i][j] * ans[j];
        if (fabs(a[i][i] > eps)) ans[i] = a[i][101] / a[i][i];
        if (fabs(a[i][i]) < eps) ans[i] = 0.0;
    }
}

void build_a(void) {
    memset(ans, 0.0, sizeof(ans));
    memset(a, 0.0, sizeof(a));
    for (int i = 1; i <= 100; i++) {
        a[i][i] = a[i][101] = 6;
        for (int j = 1; j <= 6; j++) {
            if (i + j > 100) a[i][i] -= 1;
            else a[i][jump[i + j]] += -1;
        }
    }
}

int main()
{
#ifdef LOCAL 
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif
    int T, N;
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas++) {
        scanf("%d", &N);
        for (int i = 1; i <= 100; i++) jump[i] = i;
        for (int i = 0; i < N; i++) {
            int x, y;
            scanf("%d%d", &x, &y);
            jump[x] = y;
        }
        build_a();
        gauss();
        printf("Case %d: %.15f\n", cas, ans[1]);
    }
    return 0;
}
版权声明:本文为博主原创文章,转载请注明作者:jibancanyang。

相关文章推荐

概率dp+高斯消元解方程组-hdu-4326-Game

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4326 题目大意: 有n个人,每次前面四个人玩游戏,每人赢得概率为1/4,四人中赢的人排在队...

hdu4870(高斯消元解概率DP)

这题真的是太为难我了,在接触这题之前,没学过概率dp,没学过高斯消元

hdu 5498 Tree 动态规划+快速矩阵幂+生成树计数+高斯消元

Tree Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Subm...

BZOJ 3143 概率期望+高斯消元 解题报告

bzoj3143: [Hnoi2013]

HDU 4418 Time travel(12年杭州 高斯消元求概率)

转载请注明出处,谢谢http://blog.csdn.net/acm_cxlove/article/details/7854526       by---cxlove  题目:给出一个数轴,有一...

HDU 4418 Time travel(高斯消元+概率DP)

   题意:一个人在数轴上来回走,以pi的概率走i步i∈[1, m],给定n(数轴长度),m,e(终点),s(起点),d(方向),求从s走到e经过的点数期望。   思路:先把n(n>1)个点展...

bzoj1778 驱逐猪猡 [高斯消元+概率DP]

Description奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡。猪猡的文明包含1到N一共N个猪城。这些城市由M条由两个不同端点AjA_j和BjB_j (1≤Aj≤N;1≤Bj≤N)(1 \le A_...

HDU 4870 Rating (概率+高斯消元)

题意:两个账号,初始rating都是0,他每次拿低分的那个号去打比赛,赢了加50分,输了扣100分,胜率为p,他会打到直到一个号有1000分为止,问比赛场次的期望

bzoj3143 游走 [高斯消元+概率]

Description一个无向连通图,顶点从1编号到N,边从1编号到M。 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选择当前顶点的某条边,沿着这条边走到下一个顶点,获得...

概率dp(求期望)+高斯消元 hdu-4418-Time travel

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4418 题目大意: 有n个点标号为0~n-1,A从x点出发每次可以走1~m步,走k步的概率为pk, ...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)