# 高斯消元解概率动态规划

@(E ACMer)

- 你有一个六面的刻有数字[1,6]$[1, 6]$的等概率骰子，每次抛出骰子，上面显示的数字就是你走的步数。
- 但是有一些类似(x,y)$(x, y)$的规则表示：你一旦跳到了x$x$号格子，你就会瞬间走回y$y$号格子，且这个跳跃不算做步数。(注意这里的x可能小于y)。

jump(i)$jump(i)$表示：从i$i$会立即跳跃到jump(i)$jump(i)$，对于没有跳跃规则的格子jum(i)==i$jum(i) == i$，令f(i)$f(i)$：表示从i$i$走到100$100$的期望步数，我们的目的就是求f(1)$f(1)$

f(i)=6+j<=6 and i+j<=100j=1f(jump(i+j)+tf(i)6
if (t>94) t=(6100i)  else  t=0

6xixi+1xi+2....xi+6=6

code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  "
#define pl(x) cout << #x << ": " << x << endl;
const int maxn = 103;
const double eps = 1e-9;

double a[maxn][maxn], ans[maxn];
int jump[maxn << 1];

void gauss(void) {
int i, j, t, k;
for (i = 1; i <= 100; i++) {
t = i;
for (j = i + 1; j <= 100; j++) if (a[t][i] < a[j][i]) t = j;
if (t != i) for (j = 1; j <= 101; j++) swap(a[i][j], a[t][j]);
if (fabs(a[i][i]) < eps) continue;
for (j = i + 1; j <= 100; j++) {
if (fabs(a[j][i]) > eps) {
double tt = a[j][i] / a[i][i];
for (k = i; k <= 101; k++) a[j][k] -= a[i][k] * tt;
}
}
}
for (i = 100; i >= 1; i--) {
for (j = 100; j > i; j--) a[i][101] -= a[i][j] * ans[j];
if (fabs(a[i][i] > eps)) ans[i] = a[i][101] / a[i][i];
if (fabs(a[i][i]) < eps) ans[i] = 0.0;
}
}

void build_a(void) {
memset(ans, 0.0, sizeof(ans));
memset(a, 0.0, sizeof(a));
for (int i = 1; i <= 100; i++) {
a[i][i] = a[i][101] = 6;
for (int j = 1; j <= 6; j++) {
if (i + j > 100) a[i][i] -= 1;
else a[i][jump[i + j]] += -1;
}
}
}

int main()
{
#ifdef LOCAL
freopen("in.txt", "r", stdin);
//freopen("out.txt", "w", stdout);
#endif
int T, N;
scanf("%d", &T);
for (int cas = 1; cas <= T; cas++) {
scanf("%d", &N);
for (int i = 1; i <= 100; i++) jump[i] = i;
for (int i = 0; i < N; i++) {
int x, y;
scanf("%d%d", &x, &y);
jump[x] = y;
}
build_a();
gauss();
printf("Case %d: %.15f\n", cas, ans[1]);
}
return 0;
}


• 本文已收录于以下专栏：

## 高斯消元法解01异或方程组（附poj 1222题解）

const int maxn=50; //有equ个方程，var个变元。增广矩阵行数为equ，列数为var+1 int equ,var; int a[maxn][maxn]; //增广矩阵 int x...
• qq547276542
• 2015年11月12日 23:16
• 3727

## 高斯消元法解方程组求整数解

#include #include #include using namespace std; const int maxn = 105;   int equ, var; // 有e...
• zuihoudebingwen
• 2012年08月26日 10:24
• 3357

## 用高斯消元法解异或方程组

• zhuichao001
• 2010年04月01日 11:47
• 6356

## POJ 2947 高斯消元--判断一解多解无解

• Jackyguo1992
• 2013年04月23日 18:11
• 1424

## POJ 2947 Widget Factory（高斯消元解同余方程组）

• qingshui23
• 2016年09月12日 11:14
• 767

## 高斯消元-解求精技术(Python)

• lukkk6
• 2017年11月26日 21:59
• 82

## poj 1222 高斯消元详解

• u013508213
• 2015年08月03日 22:34
• 2368

## HDU 5833 Zhu and 772002 高斯消元解异或方程组，求自由元个数，bitset压位

Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) ...
• just_sort
• 2017年03月04日 16:54
• 620

## 关于高斯消元求期望的个人理解

• wdcjdtc
• 2014年07月29日 18:50
• 664

## [BZOJ3640]JC的小苹果（概率dp+高斯消元）

• Clove_unique
• 2017年02月09日 21:54
• 772

举报原因： 您举报文章：高斯消元解概率动态规划 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)