关闭

高斯消元解概率动态规划

125人阅读 评论(0) 收藏 举报
分类:

@(E ACMer)

题目抽象:
一个长度为100的由格子组成的路,你开始在1号格子,求你走到100号格子的期望步数?
行走规则如下:
- 你有一个六面的刻有数字[1,6]的等概率骰子,每次抛出骰子,上面显示的数字就是你走的步数。
- 但是有一些类似(x,y)的规则表示:你一旦跳到了x号格子,你就会瞬间走回y号格子,且这个跳跃不算做步数。(注意这里的x可能小于y)。

分析
jump(i)表示:从i会立即跳跃到jump(i),对于没有跳跃规则的格子jum(i)==i,令f(i):表示从i走到100的期望步数,我们的目的就是求f(1)
如果y>=x,那么这个问题很好求解:

f(i)=6+j<=6 and i+j<=100j=1f(jump(i+j)+tf(i)6
if (t>94) t=(6100i)  else  t=0

直接动态规划求解即可。
但是这里y<x的情况存在,就会出现循环的情况,无法递推。我们只能列出含有100个未知变量的100个概率方程,然后用解线性方程组的高斯消元方法求解。
构造方程的其中一项类似:
6xixi+1xi+2....xi+6=6

复杂度主要是高斯消元的复杂度O(1003)


code:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <cmath>
using namespace std;
#define pr(x) cout << #x << ": " << x << "  " 
#define pl(x) cout << #x << ": " << x << endl;
const int maxn = 103;
const double eps = 1e-9;

double a[maxn][maxn], ans[maxn];
int jump[maxn << 1];


void gauss(void) {
    int i, j, t, k;
    for (i = 1; i <= 100; i++) {
        t = i;
        for (j = i + 1; j <= 100; j++) if (a[t][i] < a[j][i]) t = j;
        if (t != i) for (j = 1; j <= 101; j++) swap(a[i][j], a[t][j]);
        if (fabs(a[i][i]) < eps) continue;
        for (j = i + 1; j <= 100; j++) {
            if (fabs(a[j][i]) > eps) {
                double tt = a[j][i] / a[i][i];
                for (k = i; k <= 101; k++) a[j][k] -= a[i][k] * tt;
            }
        }
    }
    for (i = 100; i >= 1; i--) {
        for (j = 100; j > i; j--) a[i][101] -= a[i][j] * ans[j];
        if (fabs(a[i][i] > eps)) ans[i] = a[i][101] / a[i][i];
        if (fabs(a[i][i]) < eps) ans[i] = 0.0;
    }
}

void build_a(void) {
    memset(ans, 0.0, sizeof(ans));
    memset(a, 0.0, sizeof(a));
    for (int i = 1; i <= 100; i++) {
        a[i][i] = a[i][101] = 6;
        for (int j = 1; j <= 6; j++) {
            if (i + j > 100) a[i][i] -= 1;
            else a[i][jump[i + j]] += -1;
        }
    }
}

int main()
{
#ifdef LOCAL 
    freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
#endif
    int T, N;
    scanf("%d", &T);
    for (int cas = 1; cas <= T; cas++) {
        scanf("%d", &N);
        for (int i = 1; i <= 100; i++) jump[i] = i;
        for (int i = 0; i < N; i++) {
            int x, y;
            scanf("%d%d", &x, &y);
            jump[x] = y;
        }
        build_a();
        gauss();
        printf("Case %d: %.15f\n", cas, ans[1]);
    }
    return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:134854次
    • 积分:5674
    • 等级:
    • 排名:第4564名
    • 原创:446篇
    • 转载:3篇
    • 译文:0篇
    • 评论:37条