概率题

63 篇文章 0 订阅
40 篇文章 0 订阅

题:

Please write out the program output.(写出下面程序的运行结果。)【德国某著名软件咨询企业2005年10月面试题】

// P92_example1.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <stdlib.h>

#define LOOP 1000

int _tmain(int argc, _TCHAR* argv[])
{
	int rgnC = 0;
	for(int i = 0; i < LOOP; i++)
	{
		int x = rand();
		int y = rand();
		if(x*x + y*y < RAND_MAX*RAND_MAX)
			rgnC++;
	}
	printf("%d\n", rgnC);
	return 0;
}

解析:

这是我们见过的概率面试题中出得非常好的一道。

从表面上看,你完全无法看出它是一个概率问题。这里暗含的思想是一个1/4圆和一个正方形比较大小的问题,如图所示。


RAND_MAX是随机数中的最大值,也就是相当于最大半径R。x和y是横、纵坐标的两点,它们的平方和开根号就是原点到该点(x,y)的距离,当然这个距离有可能大于R,如b点,还有可能小于R,如a点。整个题目就蜕化成这样一个问题:随机在正方形里落1000个点,落在半径里面的点有多少个。如果落在里面一个点,则累计一次。

        那这个问题就很好解决了,求落点可能性之比,就是求一个1/4圆面积和一个正方形面积之比。

1/4圆面积 = (1/4)x π x r x r

正方形的面积 = r x r

两者之比 = π/4

落点数 = π/4 x 1000 = 250 x π ≈ 785

答案:

出题者的意思显然就是要求你得出一个大概值,也就是250*π就可以了。实际上呢,你只要回答700~800之间都是正确的。

我们算的是落点值,落点越多,越接近250*π,落10个点、100个点都是很不准确的,所以该题落了1000个点。读者可以上机验证该程序,将LOOP改成10000、100000来实验,会发现结果越来越接近250*π。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值