C++求组合数

本文介绍了使用C++解决组合问题的三种方法:穷举法、递归法和回溯法。通过递归法和回溯法的程序实现,展示了如何找出从1到n中任取r个数的所有组合,并讨论了程序的通用性和优化。对于递归法和回溯法,还给出了程序执行效率的比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【问题】      组合问题
问题描述:找出从自然数1、2、... 、n中任取r个数的所有组合。例如n=5,r=3的所有组合为:

1,2,3
1,2,4
1,3,4
2,3,4
1,2,5
1,3,5
2,3,5
1,4,5
2,4,5
3,4,5

用程序实现有几种方法:
1)穷举法

程序如下
【程序】
#include<stdio.h>
const int n=5,r=3;
int    i,j,k,counts=0;

int main()
{
     for(i=1;i<=r ;i++)
        for(j=i+1;j<=r+1;j++)
            for( k=j+1;k<=r+2;k++){
               counts++;
               printf("%4d%4d%4d/n",i,j,k);
           }
printf("%d",counts);
return 0;
}
但是这个程序都有一个问题,当r变化时,循环重数改变,这就影响了这一问题的解,即没有一般性。


2)递归法
分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。
设函数为void    comb(int m,int k)为找出从自然数1、2、... 、m中任取k个数的所有组
合。当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。这
就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。设函数引
入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放
在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。第一个数可以是m、m-1、
...、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组
合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。细节
见以下程序中的函数comb。
【程序】
#include <time.h>
#include <iostream&g

### 使用C++实现大数的组合数计算 对于大数的组合数计算,在常规的数据类型下可能会遇到溢出问题。为了处理这种情况,可以采用字符串来存储大整数并编写相应的算法来进行乘法和除法操作。 #### 方法概述 一种有效的方式是利用预处理阶乘及其逆元的方式来快速组合数[^2]。然而当数值非常巨大时,则需借助于高精度算术运算,即通过自定义的大数类或者第三方库(如GMP)完成加减乘除等基本运算。 #### 高精度组合数计算示例代码 下面给出一段基于字符串模拟高精度乘法与除法逻辑的简单版本: ```cpp #include <iostream> #include <vector> using namespace std; // 大数相乘函数 void multiply(vector<int>& num, int multiplier) { int carry = 0; for (size_t i = 0; i < num.size() || carry; ++i) { if (i == num.size()) num.push_back(0); long product = num[i] * static_cast<long>(multiplier) + carry; num[i] = product % 10; carry = product / 10; } } // 大数相除函数 bool divide(vector<int>& dividend, int divisor, vector<int>& quotient) { long temp = 0; bool nonZeroFound = false; for (auto rit = dividend.rbegin(); rit != dividend.rend(); ++rit) { temp = temp * 10 + *rit; if (temp >= divisor) { nonZeroFound |= true; quotient.insert(quotient.begin(), temp / divisor); temp %= divisor; } else if(nonZeroFound){ quotient.insert(quotient.begin(), 0); } } while (!quotient.empty() && !nonZeroFound) quotient.pop_back(); return nonZeroFound; } long long C(int n, int k) { if(k > n-k) k=n-k; vector<int> result{1}; for(int i=0;i<k;++i){ multiply(result,n-i); vector<int> tmp{}; divide(result,i+1,tmp); swap(tmp,result); } long long res = 0; for(auto it=result.rbegin();it!=result.rend();++it){ res=res*10+(*it); } return res; } ``` 此段程序实现了两个辅助性的静态成员函数`multiply()`用于执行大数乘法;另一个则是`divide()`负责处理大数之间的整除关系,并最终返回商的结果作为新的大数值。最后主函数`C(n,k)`调用了这两个工具函数完成了组合数的高效计算过程[^3]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值