线段树——Luogu3870/BZOJ1230 [Usaco2008 Nov]lites 开关灯

题面:Luogu3870 BZOJ1230
首先让我扯淡一会。。。
新高一开学的恐惧。。。
20号开学之后因为一直没有请到晚自修请假来机房的机会一直在教室。。。
还有军训QAQ。。。
今天我总算回到机房啦!!!
回到机房的第一件事当然是先刷道水题啦


回到正题。首先你会发现luogu是TJOI的题。。。其实原题就是usaco月赛题
其实非常简单,其实就是区间翻转操作
所以我们维护一个翻转标记暴力下传就好了啊
没了

#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <iostream>
#include <ctime>
#include <map>
#include <queue>
#include <cstdlib>
#include <string>
#include <climits>
#include <set>
#include <vector>
using namespace std;
inline int read(){
    int k=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){k=k*10+ch-'0';ch=getchar();}
    return k*f;
}
int lt[400010],rt[400010],t[400010],ro[400010],n,m;
inline void pushdown(int nod){
    if(!ro[nod])return;
    if(lt[nod]!=rt[nod]){
        ro[nod*2]^=1;ro[nod*2+1]^=1;
        t[nod*2]=rt[nod*2]-lt[nod*2]+1-t[nod*2];
        t[nod*2+1]=rt[nod*2+1]-lt[nod*2+1]+1-t[nod*2+1];
    }ro[nod]=0;
}
inline void build(int l,int r,int nod){
    lt[nod]=l;rt[nod]=r;
    if(l==r)return;
    int mid=l+r>>1;
    build(l,mid,nod*2);build(mid+1,r,nod*2+1);
}
inline void xg(int i,int j,int nod){
    pushdown(nod);
    if(lt[nod]>=i&&rt[nod]<=j){
        t[nod]=rt[nod]-lt[nod]+1-t[nod];ro[nod]^=1;
        return;
    }
    int mid=lt[nod]+rt[nod]>>1;
    if(i<=mid)xg(i,j,nod*2);if(j>mid)xg(i,j,nod*2+1);
    t[nod]=t[nod*2]+t[nod*2+1];
}
inline int ssum(int i,int j,int nod){
    pushdown(nod);
    if(lt[nod]>=i&&rt[nod]<=j)return t[nod];
    int mid=lt[nod]+rt[nod]>>1,ans=0;
    if(i<=mid)ans+=ssum(i,j,nod*2);if(j>mid)ans+=ssum(i,j,nod*2+1);
    return ans;
}
int main()
{
    n=read();m=read();
    build(1,n,1);
    for(int i=1;i<=m;i++){
        int op=read(),x=read(),y=read();
        if(op==0)xg(x,y,1);
        else printf("%d\n",ssum(x,y,1));
    }
    return 0;
}
这是一道经典的组合数学题目,需要用到组合数的性质。 我们可以先考虑 $n=5$ 的情况。这时,一共有 $2^n=32$ 种可能的抛硬币的结果,其中正面朝上的硬币数为 $0,1,2,3,4,5$ 的情况分别有 $1,5,10,10,5,1$ 种。 接下来,我们考虑 $n$ 的任意情况。可以证明,当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时是相同的;当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种。这是因为当抛硬币的次数为偶数时,正反面的数量是相等的,因此正面朝上的硬币数的种数与 $n=5$ 时相同;当抛硬币的次数为奇数时,正反面的数量不相等,因此正面朝上的硬币数的种数比 $n=5$ 时多一种。 因此,需要分别处理 $n$ 为奇数和偶数的情况。当 $n$ 为偶数时,正面朝上的硬币数的种数与 $n=5$ 时相同,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} $$ 当 $n$ 为奇数时,正面朝上的硬币数的种数比 $n=5$ 时多一种,因此答案为: $$ \sum_{i=0}^{n/2} \binom{n}{i} + \sum_{i=0}^{n/2} \binom{n}{i+1} $$ 需要注意的是,当 $n$ 为 $0$ 时,只有一种可能的结果,即所有硬币都是反面朝上,因此答案为 $1$。 以下是一份参考代码,可以用于计算答案: ```c++ #include <iostream> #include <cmath> using namespace std; int main() { int n; cin >> n; if (n == 0) { cout << "1" << endl; } else { int ans = pow(2, n); if (n % 2 == 0) { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } } else { for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i) * (1 << i) / (i + 1); } for (int i = 0; i <= n / 2; i++) { ans -= 2 * pow(-1, i) * pow(2, n - i - 1) * (1 << i) / (i + 1); } } cout << ans << endl; } return 0; } ``` 代码中使用了数学公式计算答案,其中 $\binom{n}{i}$ 使用了移项后再计算的方式,避免了复杂的组合数计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值