动态开点线段树(P1908/洛谷1908)

动态开点线段树是一种节省空间的数据结构,仅开辟必要节点,允许维护更大的区间。与普通线段树相比,它能以O(q*logm)的时间复杂度进行操作,适用于区间维护和单点修改。以洛谷1908题为例,介绍了如何使用动态开点线段树解决区间查询问题,通过维护1e9的区间,记录每个数出现的次数,从而高效回答区间内比当前数大的个数查询。
摘要由CSDN通过智能技术生成

什么是动态开点线段树:

假设操作次数为q,维护区间大小为m

普通的线段树会先把所有可能需要的节点开辟出来

需要的空间为O(4*m)

这样可以:

1.方便的通过节点下标所引导对应的左右儿子节点

2.所有需要的节点都已经有了,不必在额外创建新节点

动态开点线段树则是只开辟需要的节点,因此每个节点左右儿子都要记录

需要的空间为O(q*logm)

这样可以:

1.很明显可以节省空间

2.由于所需空间小,可以维护更大的区间


为什么可以维护更大的区间以及为什么只需O(q*logm)?

首先明确:线段树维护的区间和节点下标没有关系(普通线段树也是),维护的区间范围是什么是通过二分递归获得的。

没弄清的估计也只有我了。

 

原先的线段树,我们需要原先的区间被不断二分直到叶子的途中每一段都需要一个节点来记录信息

要维护的区间如果太大,我们就得开更大的空间以保证能维护途中所有节点,也就是说,空间限制了我们维护区间的大小

如图为区间大小为5所需的节点个数

而动态开点线段树不需要,对于一次单点修改,我们只需新建维护l

洛谷P1168题目是关于中位数线段树解法的问题。中位数线段树解法可以通过维护两个堆来实现。一个是大根堆,一个是小根堆。每次插入元素时,根据一定的规则来维护这两个堆,使得大根堆的个数在一定情况下比小根堆多1或者相等。大根堆的最后一个元素即为中位数。具体的规则如下: 1. 如果大根堆和小根堆的个数相等,下一次插入的元素一定插入到大根堆。此时判断小根堆的堆顶是否大于当前元素x,如果是,则将小根堆的堆顶元素插入到大根堆,然后将x压入小根堆;否则直接将x压入大根堆。 2. 如果大根堆和小根堆的个数不相等,按照类似的规则进行操作。 通过以上规则,可以实现在每次插入元素时,维护两个堆的平衡,并且保证大根堆的最后一个元素即为中位数。 这种解法的时间复杂度为O(logN),其中N为序列的长度。 #### 引用[.reference_title] - *1* *2* [中位数(洛谷p1168)(堆/树状数组+二分/线段树+二分)](https://blog.csdn.net/qq_45604735/article/details/114382762)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [洛谷 P1168 中位数(权值线段树,离散化)](https://blog.csdn.net/qq_38232157/article/details/127594230)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值