【数据挖掘】聚类之k-means

k-means是一种常见的无监督学习算法,用于将相似样本聚类在一起。它通过迭代寻找使样本点到其所在簇质心距离平方和最小化的划分。算法流程包括随机选择初始质心,然后不断迭代更新质心和样本分配,直到质心不再改变。然而,k-means易受初始质心选择影响,可能导致局部最优,并且确定最佳k值是个挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.算法简述


分类是指分类器(classifier)根据已标注类别的训练集,通过训练可以对未知类别的样本进行分类。分类被称为监督学习(supervised learning)。如果训练集的样本没有标注类别,那么就需要用到聚类。聚类是把相似的样本聚成一类,这种相似性通常以距离来度量。聚类被称为无监督学习(unspervised learning)。


k-means是聚类算法中常用的一种,其中k的含义是指有k个cluster。由聚类的定义可知,一个样本应距离其所属cluster的质心是最近的(相较于其他k-1个cluster)。实际上,k-means的本质是最小化目标函数:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浅唱书令

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值