- 博客(606)
- 资源 (7)
- 收藏
- 关注
原创 知识图谱10:知识图谱的知识融合
知识图谱的知识融合是一个多学科交叉的挑战,涉及人工智能、数据挖掘、自然语言处理、图数据库等多个领域。不同数据源的格式、结构和语义差异是知识融合中的一大挑战。如何有效整合不同来源的数据,并确保其一致性和质量,需要强大的技术支持。实体的歧义性(例如,"苹果"可能指代公司、果实或操作系统)会给融合带来困难。如何有效地消除歧义是一个关键问题。融合后的知识图谱可能会出现逻辑冲突或不一致的地方,如何保证推理的一致性是一个复杂的问题。知识图谱中的数据可能不完整,这需要通过推理、补充和外部知识源来弥补。
2024-12-09 15:33:01 289
原创 知识图谱9:知识图谱的展示
graphX - - - - 可以集成到。1、知识图谱的展示有很多工具。- - - - 浏览器版本。- - - - 桌面版本。
2024-12-09 15:29:55 269
原创 知识图谱8:深度学习各种小模型
graphX - - - - 可以集成到。1、知识图谱的展示有很多工具。- - - - 浏览器版本。- - - - 桌面版本。
2024-12-09 15:28:10 229
原创 知识图谱2:知识图谱概览
知识图谱的每个节点和边通常都有明确的语义定义,代表概念及其关系,这体现了符号主义的特征。例如,知识图谱可以使用语义网技术(如 RDF 和 OWL)来描述数据,这是一种符号主义的方法,它允许逻辑推理和复杂查询。不同的数据存储方式,比如使用 Redis 来实现简单的图数据库、在关系数据库中用外键关联、或使用 URI 进行语义互联,都反映了不同的设计取舍。知识图谱在结构上确实呈现为网络图,节点之间的关系通过边连接起来,表现出某种连接主义的特征。节点之间的连接可以看作是信息的关联与流动,类似于神经网络的连接。
2024-11-04 17:58:35 378
原创 Flutter 第二篇
1、第一步async: 2.4.0audio_recorder: 1.0.22、点击右上角 更新大部分红线没有了卡在3、运行在模拟器里面Running Gradle task 'assembleDebug'...
2024-10-09 15:45:12 540
原创 大模型18:微调大模型方法PEFT(LoRA等) — 训练 “ChatGLM2“ 项目
PEFT是一种优化微调大模型的技术,目标是在减少训练参数量的同时仍然能够取得良好的微调效果。:通过将模型权重矩阵进行低秩分解,只微调低秩矩阵,从而减少计算量。Adapter:引入额外的小规模网络层(适配器层),只微调这些层,保持原模型的主要参数不变。:在模型的输入序列前添加可学习的前缀向量,并仅微调这些前缀。
2024-08-22 12:23:57 419
原创 大模型16:大模型部署ChatGLM-6B
架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGPT 相似的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型,基于。
2024-08-22 10:10:12 268
原创 大模型14:手写transform架构
Transformer学习笔记(下),手写实现Transformer_手写transformer-CSDN博客
2024-08-12 14:15:37 246
原创 大模型13:大语言模型分布式预训练
大语言模型的分布式预训练是一种将模型训练任务分布到多个计算节点上,以提高训练效率和处理更大数据集的方法。- 将模型的不同部分(通常是网络层)按顺序分配到不同的计算节点,并使用流水线技术让每个节点并行地处理不同的输入数据,以提高计算效率。通过分布式预训练,可以更有效地利用计算资源,训练出更大、更复杂的语言模型,提高模型的性能和应用范围。- **同步问题**:确保各个节点上的模型参数同步更新是一大挑战,尤其是在大规模训练环境下。- **通信开销**:不同节点之间的数据交换会带来通信开销,影响训练效率。
2024-08-12 14:12:34 190
原创 计算机视觉10 总结
在自动驾驶中用于识别道路、车辆和行人区域;在医疗图像分析中辅助医生分割病变组织等,在图像语义分割、实例分割等任务中有显著成果。FCN 为计算机视觉的图像理解和处理提供了强大有效的方法,促进了相关技术的发展和应用。全卷积网络(FCN)是计算机视觉中用于处理图像任务的重要网络架构。
2024-07-18 10:28:30 660
原创 计算机视觉9 全卷积网络
例如,在自动驾驶场景中,FCN 可以用于识别道路、车辆和行人等不同的区域,为车辆的自主决策提供关键的信息。在实际应用中,FCN 及其改进版本在图像语义分割、实例分割等任务中取得了显著的成果,为计算机视觉领域的发展做出了重要贡献。总之,全卷积网络为计算机视觉中的图像理解和处理提供了一种强大而有效的方法,推动了相关技术的不断进步和应用拓展。FCN 则通过将全连接层替换为卷积层,实现了对任意尺寸输入图像的像素级分类,从而可以完成图像分割等任务。
2024-07-18 10:27:39 772
原创 计算机视觉8 图像增广
例如,通过不同方式裁剪图像,使感兴趣的物体出现在不同位置,可以减轻模型对物体出现位置的依赖性;调整亮度、色彩等因素能降低模型对色彩的敏感度。图像增广(image augmentation)是通过对训练图像进行一系列随机改变,从而产生相似但又不同的训练样本的技术。在实践中,通常仅在训练样本上进行图像增广,而在预测过程中不使用随机操作的图像增广,以获得确切的结果。
2024-07-18 10:24:36 516
原创 计算机视觉7 kag比赛
在实践过程中,你可以参考其他参赛者的代码和思路,学习优秀的解决方案。同时,不断尝试新的方法和技巧,以提高自己模型的性能。
2024-07-18 10:20:59 652
原创 计算机视觉6 计算机视觉---风格迁移
本节将介绍如何使用卷积神经网络,自动将一个图像中的风格应用在另一图像之上,即。我们将使用神经网络修改内容图像,使其在风格上接近风格图像。这里我们需要两张输入图像:一张是。
2024-07-17 11:23:50 284
原创 计算机视觉篇5 图像的位置--边框
(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。在预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置以获得预测的边界框,最后只输出符合特定条件的预测边界框。的位置及其包围物体类别的标签。要标记任何生成的锚框,我们可以参考分配到的最接近此锚框的真实边界框的位置和类别标签。下文将介绍一个算法,它能够把最接近的真实边界框分配给锚框。在训练集中,我们将每个锚框视为一个训练样本。为了训练目标检测模型,我们需要每个锚框的。
2024-07-17 11:21:12 335
原创 计算机视觉篇4 图像的位置--目标检测
在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为。(object detection)或。
2024-07-17 11:16:03 136
原创 计算机视觉篇3 图像分类--微调
一种可能的方法是首先识别100把普通椅子,为每把椅子拍摄1000张不同角度的图像,然后在收集的图像数据集上训练一个分类模型。尽管这个椅子数据集可能大于Fashion-MNIST数据集,但实例数量仍然不到ImageNet中的十分之一。我们还描述了学术界当下使用最广泛的大规模图像数据集ImageNet,它有超过1000万的图像和1000类的物体。例如,尽管ImageNet数据集中的大多数图像与椅子无关,但在此数据集上训练的模型可能会提取更通用的图像特征,这有助于识别边缘、纹理、形状和对象组合。
2024-07-17 11:07:51 179
原创 计算机视觉篇2 图像分类
图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。
2024-07-17 11:05:02 507
eclipse-cpp-mars-1-win32-x86_64.zip
2019-10-14
NSIS 中文版
2008-09-11
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人