交换两个数组使两个数组和的差最小

本文介绍了一种通过交换两个数组中的元素来最小化它们和的差值的算法。算法核心在于找到使得数组和差值尽可能减小的元素对,并进行交换。适用于面试和技术讨论。

今天又看见了这个题目,好像上次是李灾跟我说腾讯面他的时候问了这个问题的。想了半天,在网上也看了半天,发现一个不错的算法,先帖出来:^ ^

 /*

    有两个数组a,b,大小都为n,数组元素的值任意整形数,无序;
    要求:通过交换a,b中的元素,使[数组a元素的和]与[数组b元素的和]之间的差最小。

*/

/*
    求解思路:

    当前数组a和数组b的和之差为
    A = sum(a) - sum(b)

    a的第i个元素和b的第j个元素交换后,a和b的和之差为
    A' = sum(a) - a[i] + b[j] - (sum(b) - b[j] + a[i])
           = sum(a) - sum(b) - 2 (a[i] - b[j])
           = A - 2 (a[i] - b[j])
    设x = a[i] - b[j]

    |A| - |A'| = |A| - |A-2x|

    假设A > 0,

    当x 在 (0,A)之间时,做这样的交换才能使得交换后的a和b的和之差变小,x越接近A/2效果越好,

    如果找不到在(0,A)之间的x,则当前的a和b就是答案。

    所以算法大概如下:

    在a和b中寻找使得x在(0,A)之间并且最接近A/2的i和j,交换相应的i和j元素,重新计算A后,重复前面的步骤直至找不到(0,A)之间的x为止。

*/

 把算法大概实现了一下,程序如下:

  1  int  test( float  a[],  float  b[],  int  n)
  2  {
  3       float  sumA, sumB;  // sumA为数组a总和,sumB为数组b总和
  4       float  sum_diff, num_diff;  // sum_diff为a,b总和差, num_diff为a,b中各选的两个数之差
  5       float  temp1, temp2;     // temp1为 每轮sum_diff/2, temp2为每轮所选两个数之差于temp1最接近的那个
  6       int  i, j;
  7       float  temp;  // 用于对调a,b间数
  8       int  tempi, tempj;     // 每轮所选两个数之差于temp1最接近的那组数
  9      unsigned  int  flag_sum  =   0 , flag_num  =   0 ;   // flag_sum为1, sumA大于sumB; flag_num为1, 此轮存在两个数之差小于sum_diff
 10  
 11  
 12          
 13  
 14       while ( 1 ){
 15  
 16           // 算出a,b数组和
 17          sumA  =   0 ;
 18          sumB  =   0 ;
 19           for (i = 0 ;i  <  n;i ++ )
 20          {
 21              sumA  +=  a[i];
 22              sumB  +=  b[i];
 23          }
 24  
 25           if (sumA  >=  sumB){
 26              sum_diff  =  sumA  -  sumB;
 27              flag_sum  =   1 ;
 28          }
 29           else
 30              sum_diff  =  sumB  -  sumA;    
 31      
 32          temp1  =  sum_diff / 2 ;
 33          temp2  =  temp1;
 34          tempi  =   0 ;
 35          tempj  =   0 ;    
 36      
 37           // 找出a,b间差值最接近sum_diff/2的那一对数
 38           if (flag_sum  ==   1 ){     // sumA > sumB
 39               for (i = 0 ; i  <  n; i ++ )
 40                   for (j = 0 ; j  <  n; j ++ )
 41                  
 42                       if (a[i]  >  b[j]){
 43                          num_diff  =  a[i]  -  b[j];
 44                           if (num_diff  <  sum_diff){
 45                              flag_num  = 1 ;
 46                               if (num_diff  >=  temp1){
 47                                   if (num_diff - temp1  <  temp2){
 48                                      temp2  =  num_diff - temp1;
 49                                      tempi  =  i;
 50                                      tempj  =  j;
 51                                  }
 52                              }
 53                               else {
 54                                   if (temp1  -  num_diff  <  temp2){
 55                                      temp2  =  temp1  -  num_diff;
 56                                      tempi  =  i;
 57                                      tempj  =  j;
 58                                  }
 59                              }
 60                          }
 61                      }
 62          }
 63           else {
 64               for (i = 0 ; i  <  n; i ++ )
 65                   for (j = 0 ; j  <  n; j ++ )
 66                  
 67                       if (a[i]  <  b[j]){
 68                          num_diff  =  b[j]  -  a[i];
 69                           if (num_diff  <  sum_diff){
 70                              flag_num  = 1 ;
 71                               if (num_diff  >=  temp1){
 72                                   if (num_diff - temp1  <  temp2){
 73                                      temp2  =  num_diff - temp1;
 74                                      tempi  =  i;
 75                                      tempj  =  j;
 76                                  }
 77                              }
 78                               else {
 79                                   if (temp1  -  num_diff  <  temp2){
 80                                      temp2  =  temp1  -  num_diff;
 81                                      tempi  =  i;
 82                                      tempj  =  j;
 83                                  }
 84                              }
 85                          }
 86                      }
 87          }
 88  
 89           if (flag_num  ==   0 )
 90               break ;
 91  
 92          temp  =  a[tempi];
 93          a[tempi]  =  b[tempj];
 94          b[tempj]  =  temp;
 95      
 96          flag_num  =   0 ;
 97          flag_sum  =   0 ;
 98      }
 99          
100       for (i = 0 ; i  <  n;i ++ )
101          printf( " %f/t " ,a[i]);
102  
103      printf( " /n " );
104  
105       for (i = 0 ; i  <  n;i ++ )
106          printf( " %f/t " ,b[i]);
107  
108      printf( " /n " );    
109      
110       return   0 ;
111  }
112  
113  
114  int  main( int  argc,  char   * argv[])
115  {
116  
117       float  a[ 3 =  { 4 , 5 , 12 };
118       float  b[ 3 =  { 1 , 2 , 3 };
119  
120      test(a, b,  3 );
121  
122       return   0 ;
123  }
124

为了将一个包含 `2N` 个元素的数组划分为两个大小各为 `N` 的子数组,使得这两个数组最小,可以采用贪心算法或者动态规划来解决。以下是一个基于贪心思想的实现方法。 ### 思路 1. **排序与贪心选择**:首先对数组进行排序,然后从中间开始,尝试通过调整划分位置来最小化两部分的。 2. **滑动窗口法**:使用双指针技术,从数组两端向中间移动,分别计算左右两部分的,并调整指针以缩小两者之间的距。 3. **递归优化**:如果需要更精确的结果,可以结合回溯或 DFS 来探索所有可能的划分方式,从而找到最优解。 ### 示例代码 ```cpp #include <iostream> #include <vector> #include <algorithm> #include <cmath> using namespace std; // 计算两个数组最小差值划分 pair<vector<int>, vector<int>> minDifferencePartition(vector<int>& nums) { int n = nums.size() / 2; sort(nums.begin(), nums.end()); // 排序以便于贪心策略应用 vector<int> left, right; int sumLeft = 0, sumRight = 0; // 初始分配,前n个给left,后n个给right for (int i = 0; i < n; ++i) { left.push_back(nums[i]); sumLeft += nums[i]; } for (int i = n; i < 2 * n; ++i) { right.push_back(nums[i]); sumRight += nums[i]; } int minDiff = abs(sumLeft - sumRight); // 尝试交换元素以减少差值 for (int i = 0; i < n; ++i) { for (int j = n; j < 2 * n; ++j) { int newSumLeft = sumLeft - nums[i] + nums[j]; int newSumRight = sumRight + nums[i] - nums[j]; int diff = abs(newSumLeft - newSumRight); if (diff < minDiff) { // 更新最小差值及相关数组 minDiff = diff; swap(left[i], right[j - n]); // 注意索引偏移 sumLeft = newSumLeft; sumRight = newSumRight; } } } return {left, right}; } int main() { vector<int> nums = {3, 1, 4, 2, 5, 6}; // 示例输入 auto result = minDifferencePartition(nums); cout << "Left array: "; for (int num : result.first) { cout << num << " "; } cout << endl; cout << "Right array: "; for (int num : result.second) { cout << num << " "; } cout << endl; return 0; } ``` ### 说明 - **排序**:通过排序可以更好地应用贪心策略,因为较大的数更容易影响总的变化。 - **初始划分**:将前 `N` 个元素分配到第一个子数组,剩下的分配到第二个子数组。 - **交换优化**:遍历所有可能的交换合,寻找能使差值最小化的交换操作。 - **时间复杂度**:最坏情况下为 O(N²),适用于中等规模的数据集。 ###
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值