- 博客(1334)
- 资源 (35)
- 收藏
- 关注
原创 大模型预训练、微调、强化学习、评估指导实践
本文概述了大模型训练工具、核心训练方法及DeepSeek大模型训练实战手册。主流训练工具包括Megatron-LM、DeepSpeed、HuggingFace Transformers等,适用于不同规模和场景的模型训练。核心训练方法涵盖预训练、微调和强化学习,分别通过无标注数据学习通用语言表示、调整模型参数以适应特定任务,以及优化生成内容质量。DeepSeek大模型训练实战手册详细介绍了预训练、领域微调和强化学习优化的具体步骤和配置,提供了解决显存不足、训练不收敛和多机通信瓶颈的调优技巧。最后,文章总结了训
2025-05-20 18:35:34
494
原创 LLM大模型工具链
本文概述了大模型开发、训练、部署及应用的多个关键工具和框架。在训练方面,PyTorch Lightning、DeepSpeed和Megatron-LM等工具简化了大规模模型的训练流程。微调工具如HuggingFace Transformers和LoRA/Lit-GPT提供了高效的模型调整方案。模型压缩与优化工具如TensorRT-LLM和GGML则专注于提升模型推理效率。部署与服务化方面,vLLM和TGI等框架支持高吞吐量的模型推理,而MLC-LLM和ONNX Runtime则优化了边缘端的模型部署。数据处
2025-05-20 18:31:15
520
原创 大模型预训练、微调、部署、推理用到的工具总结
TensorFlow: 一个开源机器学习框架,常用于建立和训练深度学习模型。PyTorch: 另一个流行的深度学习框架,具有动态计算图和易用性,适合研究和开发。Hugging Face Transformers: 提供了多种预训练模型(如BERT、GPT-3等)的实现,便于进行模型的加载与使用。
2025-05-19 20:09:58
124
原创 Cursor 与 Windsurf 背后的核心算法机制
技术专家NirDiamant深入解析了Cursor和Windsurf两款AI编程助手的核心算法和系统运作机制。这两款工具通过先进的上下文检索系统和向量数据库,能够理解整个代码库和开发者的意图,提供精准的代码建议和修改。Cursor采用两阶段检索方法,而Windsurf则利用基于LLM的搜索工具,两者都具备高效上下文窗口管理机制。它们通过ReAct模式执行任务,结合大模型和小模型的优势,实现智能代理功能。此外,两款工具都具备实时同步机制,确保与开发者的操作保持同步,提供流畅的编程体验。这些深入的技术细节展示了
2025-05-16 02:03:34
929
原创 LLM Text2SQL NL2SQL 实战总结
为了提高LLM生成SQL语句的准确率,需要提供恰当的数据库背景信息。这些信息应全面描述表的功能、核心字段、关联性以及字段的功能和格式。对于枚举类型和时间字段,需特别详细描述其取值和存储格式。同时,应避免提供业务上无用或意义等价的字段信息,以减少LLM的上下文负担。在面对多表场景时,可以采用两步法:先让LLM根据表描述选择相关表,再提供具体表结构生成SQL。这些原则旨在帮助LLM清晰理解数据库结构,从而提高SQL生成效率。
2025-05-16 00:18:43
832
原创 Milvus 视角看重排序模型(Rerankers)
重排序器在信息检索和生成式人工智能中扮演着关键角色,用于优化初始搜索结果的顺序。与传统的嵌入模型不同,重排序器直接根据查询和文档返回相似度得分,而非嵌入向量。它通常在向量近似最近邻(ANN)搜索后使用,通过更深入的上下文分析(如BERT等Transformer模型)来提升结果的相关性。PyMilvus模型库集成了重排序功能,支持多种重排序工具(如BGE、CrossEncoder等),以优化搜索结果的准确性。通过示例展示了如何使用BGE和CrossEncoder重排序器对搜索结果进行重新排序,显著提高了结果的
2025-05-14 21:53:09
455
原创 Milvus 视角看主流嵌入式模型(Embeddings)
这类模型,如BERT或Transformer系列,能够高效地表示文本、图像等数据的语义。嵌入的关键在于向量间的数学距离反映了原始数据的相似性,这一特性广泛应用于信息检索、电商推荐和生成式人工智能等领域。嵌入分为密集和稀疏两种类型,密集嵌入产生数百到数千维的浮点向量,而稀疏嵌入则产生更高维度且大多数为零的向量。Milvus是一款专为矢量数据管理设计的数据库,支持主流嵌入模型,简化了文本转换和检索增强生成(RAG)的开发过程。通过PyMilvus,用户可以轻松生成文本嵌入,并利用BGEM3等模型进行密集和稀疏向
2025-05-14 21:44:07
817
原创 Milvus 全面解析
Milvus是一种以猛禽命名的开源高性能矢量数据库,由Zilliz开发并捐赠给Linux基金会。它支持从本地到大规模分布式系统的多种部署模式,适用于处理非结构化数据,如文本、图像和音频。Milvus通过嵌入技术将非结构化数据转换为数值向量,实现快速搜索和分析。其设计优化了硬件性能,支持多种搜索算法和数据类型,确保高效和可扩展性。Milvus的云原生架构和高度解耦的系统设计使其能够轻松扩展,支持大规模数据处理。此外,Milvus提供了丰富的API和SDK,以及多种高级功能,如多租户支持、数据隔离和人工智能集成
2025-05-14 21:35:41
883
原创 自动化Ai Agent全流程实现【设计+代码】
本文探讨了人工智能代理(AI代理)如何通过自动化复杂的业务流程来帮助企业提高效率和降低成本。AI代理具有适应性、智力、自主性和可扩展性等特点,能够处理非结构化信息、在定义参数范围内做出判断、协调多个系统或利益相关者,以及处理变量输入和异常。文章详细介绍了AI代理在文件处理、客户服务、人才招聘和财务运作等领域的应用,并提供了一个逐步实现发票处理自动化的案例。此外,文章还强调了实施AI代理自动化的优势,包括效率提升、成本降低、准确性和可扩展性的改进,并提出了实施最佳实践,如从高影响力流程开始、设计人机交互、优先
2025-05-14 13:15:48
452
原创 RAG之大规模解析 PDF 文档全流程实战
构建可扩展的 PDF 处理系统需要精心组合各种技术、工具和质量控制机制。通过实现类似本文所述的流程,您可以高效地从大量 PDF 文档中提取结构化数据,将非结构化内容转换为有价值的、机器可读的信息。
2025-05-13 22:26:30
424
原创 构建可信数据空间需要突破技术、规则和生态三大关键
构建可信数据空间需攻克技术、规则和生态三大关键。技术上,需解决隐私计算的“可用不可见”难题;规则上,建立动态确权和跨境流动的治理框架;生态上,形成多方协同的标准体系。实现技术可控、规则可信、生态协同,才能释放数据要素价值,推动数字经济高质量发展。具体措施包括数据源认证、使用约束设置、资源目录管理、格式转换、脱敏保护、算力工具、加密计算、数据沙箱、行为审计及跨境合规管理等。
2025-05-13 19:52:39
338
原创 传统“了解你的客户 (KYC)”面临的挑战
KYC 流程通常要求个人提供大量个人信息,这引发了隐私和数据安全方面的担忧。用户可能不愿与多个组织共享其敏感数据,担心身份被盗或信息被未经授权访问。
2025-05-05 12:42:16
32
原创 YOLO(You Only Look Once)模型简史
YOLO(YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的约瑟夫-雷德蒙(Joseph Redmon)和阿里-法哈迪(Ali Farhadi)开发。YOLO 于 2015 年推出,因其高速度和高精确度而广受欢迎。
2025-05-03 00:19:25
838
原创 传统银行服务和 区块链支付无缝融合的一种解决方案
Fiat24 创新的区块链银行架构将传统银行服务和 Web3 区块链支付创新无缝融合,在增强便利性的同时也加强了安全性,避免了单点故障的风险。通过 Fiat24,客户可以使用存储在 MetaMask 或任何其他非托管加密钱包中的加密资产,进行法币的出金、兑换,以及日常的加密消费支付,使他们的加密资产可以用于接受 VISA 的任何地方。
2025-05-02 23:59:36
1354
1
原创 应用接入Stripe支付实战【2025版+配置+服务端+客户端+生产级+架构图+代码】
本文提供了Stripe支付接入的全流程实战,设计和实现了生产级可用方案,提前踩了所有的坑,可将开发时间由1一个月缩短至1天,大大提高研发效率。
2025-05-02 17:29:52
1299
原创 MCP Host、MCP Client、MCP Server全流程实战
MCP (Model Context Protocol,模型上下文协议)定义了应用程序和 AI 模型之间交换上下文信息的方式。这使得开发者能够以一致的方式将各种数据源、工具和功能连接到 AI 模型(一个中间协议层),就像 USB-C 让不同设备能够通过相同的接口连接一样。MCP 的目标是创建一个通用标准,使 AI 应用程序的开发和集成变得更加简单和统一。
2025-04-22 22:37:18
1073
原创 比特币三种扩容路径Nubit、Babylon、Bitlayer分析
Nubit 坚持「比特币最大主义」,认为一切扩容都应该发生在比特币主链之上;Babylon 采取折中路线,试图将比特币与 Cosmos 生态融合;Bitlayer 则完全拥抱以太坊范式,希望复制以太坊的成功经验
2025-04-22 13:40:13
223
原创 uv运行一个MCP Server的完整流程
uv是一个高性能的Python包管理器,专注于性能提升。与pip相比,uv利用全局模块缓存,减少磁盘空间使用,并支持Linux、Windows和macOS系统。安装uv可以通过多种方式实现,例如使用Homebrew、Pacman、pip等。
2025-04-21 20:28:36
805
原创 DeepSeek-R1-Distill-Qwen-7B到底是什么
DeepSeek和通义千问(Qwen)是两种独立开发的大语言模型,但通过知识蒸馏技术形成了协同关系。
2025-04-17 19:06:30
454
原创 隐私区块链系统中抗不良行为方案设计
区块链的无须许可特性,加上屏蔽池所具备的匿名性,不可避免地会引发不良行为者以不可追踪的方式转移资金的问题。一个经常被提及的例子是,黑帽黑客将从桥接攻击中窃取的资金存入屏蔽池,意图稍后提取,从而抹去与初始存款的关联。这实际上就是“洗白”资金,即隐藏其实际来源。
2025-04-14 20:23:43
122
原创 RAG技术实现四大核心挑战
导读随着技术的深入应用,如何高效利用大模型技术优化用户体验,同时应对其带来的诸多挑战?本文将从RAG的发展趋势、技术挑战、核心举措以及未来展望四个维度总结我们应对挑战的新的思路和方法。一、背景自2022年11月30日OpenAI发布ChatGPT-3.5以来,预训练大模型技术开启了指数级发展进程。这一革新热潮在2023年3月至4月达到阶段性高峰:阿里通义千问和百度文心一言等国内头部企业相继发布自主训练的大模型,正式宣告人工智能领域迈入大模型驱动的新纪元。
2025-04-13 09:43:47
1105
原创 15 个最佳开源 RAG 框架评析
RAG 在 2025 年仍然至关重要,因为它是增强 LLM 功能的最佳技术,无论其规模和上下文窗口如何。本文探讨了当今可用的顶级开源 RAG 框架,重点介绍了它们的独特功能、优势以及如何将它们集成到您的 AI 应用程序中。
2025-04-13 01:12:20
801
原创 Firecrawl深度基础刨析篇
是一个云爬取服务,可以无需网站地图的情况下爬取整个网站内容、单个网页、网站地图;使用 JSON Schema(遵循 OpenAI 工具 Schema)定义要抓取的 URL 和所需的数据 Schema。同步方法将返回批量抓取作业的结果,而异步方法将返回一个作业 ID,您可以使用该 ID 检查批量抓取的状态。从指定的 URL 开始,通过查看站点地图识别链接,然后抓取网站。将收集的数据转换为干净的标记或结构化输出,非常适合 LLM 处理或任何其他任务。处理动态内容:动态网站、js 渲染的网站、PDF、图像。
2025-04-12 14:04:47
1263
原创 RAG原理和优化的解决方案
RAG方案是一个很有用的将大模型结合垂类业务数据的解决方案,本文从原理和落地解决方案方面分析了RAG技术。但是RAG的使用也存在一些局限性:1. 依赖embedding的准确性它的核心即文档内容的向量化过程,向量化的准确性决定了问答召回的准确性2. 依赖文档质量如果知识库存在错误、不完整或过时的信息,会导致产生错误的或者误导的信息。3. 处理长文档的挑战长文档的处理会带来工程上的复杂度,处理不当会影响系统的准确性。4. 文档召回和大模型幻觉。
2025-04-12 11:16:48
736
原创 Model Context Protocol (MCP) 与 传统 Function Calling 到底什么区别
Model Context Protocol (MCP) 与 传统 Function Calling 到底什么区别。
2025-04-12 11:15:28
256
原创 前端通信库fetch-event-source实现丰富的SSE
相比轮询,SSE显著降低延迟与资源消耗,是Web实时应用的优选方案之一。最终效果与使用原生EventSource一样,但是使用Fetch-Event-Source我们的可配置项非常多(只要Fetch API支持的都可以使用)。本篇文章我们将介绍一个开源组件fetch-event-source,该组件在发起事件源请求时,同时拥有Fetch API所提供的所有功能。/sse,该接口将通过fetch-event-source库来处理,注意这时候我们使用的是POST请求,并且还携带了请求body内容。
2025-04-10 17:14:57
1217
原创 Walrus 是如何同时做到【存储的去中心化】和【数据的可编程性】呢?
Walrus 通过 Red Stuff 解决这一问题,采用独特的 2D 编码算法,确保高效、快速、可靠的数据存储。
2025-04-10 15:27:05
172
原创 实现抗隐私泄漏的AI人工智能推理
此外,许多公司在未经明确同意的情况下自动将用户纳入 AI 模型训练,例如拥有专有 AI 模型的社交媒体巨头 Twitter、Meta 和 Microsoft (LinkedIn)。想象一下,开发一款尖端的财务预测应用程序,但其代码、数据集、算法和执行却被一个受感染的节点暴露,使其容易受到竞争对手或大型公司的攻击。TEE 的工作方式不同,它就像处理器内部的数字保险库,即使系统的其余部分受到威胁,也能确保信息保持私密。然而,用户通常无法了解其数据是如何处理的,这引发了对隐私和潜在滥用的担忧。
2025-04-09 20:09:41
171
原创 金融级隐私安全之DeepSeek R1 模型去中心化存储和推理实现方案
像 HuggingFace 这样的服务是攻击的目标,过去曾受到攻击,包括攻击者将后门模型注入公共存储库。同时,Walrus 为 AI 模型和数据检索提供安全、去中心化的存储,增强了 Atoma 维护可验证、抗审查的 AI 应用程序的能力。通过使用 Walrus 的去中心化存储,Atoma 可确保 DeepSeek R1 完全分布在对等存储网络中,从而消除了中心化托管的漏洞。Atoma 与 Sui 和 Walrus 的整合形成了一个完整的去中心化 AI 基础设施,将计算、存储和支付整合到一个统一的框架中。
2025-04-09 20:08:38
490
原创 zkTLS 工作原理
随着我们更多的在线生活通过可验证声明变得可访问,新一代应用程序将出现 —— 这些应用程序赋予用户更大的控制权,减少摩擦,并释放真正的价值。尽管 Web3 已经构建了强大的工具和基础设施,但普通互联网用户仍然生活在 Web2 中 —— 在中心化平台上浏览、交易和社交,这些平台控制着他们的数据。随着更多应用程序采用 zkTLS,我们将看到复合效应:更多的可验证数据带来更强大的应用程序,从而赋予用户更大的控制权 —— 以及更多理由以自己的条件解锁数据。玩家可以证明技能并领取基于游戏的奖励 —— 无需截图。
2025-04-02 19:06:06
100
原创 zkTLS 三种实现方式:MPC、TEE、Proxy的简析
顾名思义,zkTLS 是一种混合协议,它使用零知识和 TLS,这种组合可能会彻底改变网络上的数据传输。要了解 zkTLS,有必要分解它的两个主要组件。
2025-04-02 17:51:04
88
原创 一文读懂 RAG 架构:从基础到高级的7种模式
在人工智能飞速发展的当下,RAG(Retrieval-Augmented Generation)技术凭借独特优势脱颖而出,成为众多应用的关键支撑。它在 AI 生成过程中引入外部知识检索,极大提升了 AI 回答的准确性与全面性,从基础架构衍生出多种高级模式,广泛应用于多个领域。RAG 架构主要包含嵌入模型、生成模型、重排序模型、向量数据库、提示模板和 AI Agent 等组件。嵌入模型负责把文本转化为向量表示,便于后续检索;生成模型承担最终内容生成任务;重排序模型优化检索结果相关性;
2025-04-01 21:09:50
908
原创 Builder.IO王炸级AI爬取解决方案GPT-Crawler到底怎样?
4)找到配置文件config.ts。利用nvm管理和切换node版本。2)确定和切换node版本。
2025-04-01 18:45:29
438
原创 静默支付(Silent Payments)
然而,如果我们使用一个单独的进程来运行扫描,则不仅要付出额外的计算开销,还需要额外的、较深的硬盘读取,因为新区块一旦验证完成,其中的交易的输入的脚本公钥就不再能从 UTXO 集中获得,只能通过访问历史交易来获得(并且,这里还多一项存储空间开销:为区块链上的所有交易编制索引,如果这样的索引不存在,则实际上无法读取历史交易,而同步 验证-扫描 模式并不需要为历史交易编制索引)。使用它,支付接收者只需公开一个稳定不变的标识符(可以视为一种特殊的地址),发送者将在支付发送过程中为接收者创造出不重复的新比特币地址。
2025-04-01 01:09:24
128
原创 zkTLS(零知识传输层安全协议) 两种主要实现方式
zkTLS 是一种将 TLS(加密通信协议) 与 零知识证明(zk) 技术结合的机制,能够在保护数据隐私的前提下,生成有关 web2 会话的加密证明。TLSNotary 允许用户生成可验证的 web 会话证明,但存在中心化信任问题,即证明的可信度依赖于单一服务提供者。与 Eigenlayer 集成:通过引入基于 slashing 的机制,惩罚不当行为的节点,从而增强系统的安全性。随机节点抽样:在生成证明时,随机选择节点组合,防止长期合作的节点之间进行串通。用户依然按照常规方式访问目标网站,进行登录或操作;
2025-04-01 00:48:22
250
转载 文生图大模型中文基准测评2024.9月榜单公布,6大维度34大任务14大模型
---逐项打分开始----**内容完整性**:生成的图像文字内容与用户指定的"老四川江湖菜"不符,文字内容出现较大偏差。----逐项打分结束--------逐项打分开始----**内容完整性**:图像中的文字“老四川江湖菜”完整准确,符合用户的文本要求。具体操作方法为:抽取4个模型,按任务类型进行分层抽样,对各模型对应的120个任务输出答案的质量进行人工评价,并与GPT-4o的评分进行比较,考察GPT-4o评价与真实情况的吻合程度,给出相应的评分(优秀/良好/及格/不及格)。均有65分以上的优异表现。
2025-03-26 20:53:16
141
基于区块链的去中心化网络Mira用于无信任的人工智能输出验证
2025-03-24
Natural Language Processing with Deep Learning CS224N/Ling284
2024-09-09
RFC9220 - HTTP Datagrams and the Capsule Protocol
2024-08-02
RFC9297 - Bootstrapping WebSockets with HTTP/3
2024-08-02
RFC9114 - HTTP/3
2024-08-02
RFC9000 - QUIC: A UDP-Based Multiplexed and Secure Transport
2024-08-02
RFC8446 -The Transport Layer Security (TLS) Protocol Version 1.3
2024-08-02
Web3+Decentralized+去中心化+存储
2024-04-30
Chainbase+Web3+APi+Data warehouse
2024-04-30
Graph+Web3+检索
2024-04-30
Web3+Nostr+区块链+去中心化+Relay+抗审查
2024-04-30
VISION FOR A HETEROGENEOUS MULTI-CHAIN FRAMEWORK DRAFT
2023-12-24
Security audit report for imtoken wallet
2023-12-24
Decentraland is a blockchain-based virtual world
2023-12-24
力场的定位是一个以公链共建挖矿为核心的社区平台以及UGC平台
2023-12-24
A Novel Metastable Consensus Protocol Family for Cryptocurrencie
2023-12-24
Measuring Ethereum Network Peers
2023-12-24
Firework Games White Paper
2023-12-24
CS251 Final Exam 2021
2023-12-24
Generic Construction of Ring Signatures with Efficient
2023-12-24
The Gridex Protocol
2023-12-24
Efficient Zero-Knowledge Arguments for Arithmetic Circuits
2023-12-24
KishuInu Whitepaper
2023-12-24
On the Instability of Bitcoin Without the Block Reward
2023-12-24
Shorter Proofs for Privacy-Enhanced Distributed Ledger
2023-12-24
Attacking Threshold Wallets
2023-12-23
This paper provides an architectural overview of the Avalanche
2023-12-23
Avalanche Native Token ($AVAX) Dynamics
2023-12-23
ZKSwap是一个基于 ZK-Rollup 的 Layer2 代币Swap协议
2023-12-23
ZEND White Paper
2023-12-23
KZen Curv Security Audit
2023-12-23
为什么虚拟资产值得投资:元宇宙虚拟地产报告
2023-10-27
元宇宙:未来数字绿洲入口已打开
2023-10-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人