分析条件,我们把问题抽象为数学模型。设输入序列为S,考虑S[i],S[j]两个元素不能进入同一个栈的条件.注意,这里所说的"S[i],S[j]两个元素不能进入同一个栈",不是说仅仅不能同时在一个栈中,而是自始至终不能进入一个栈,即如果有解,那么S[i],S[j]一定进入过的栈不同.
结论P: S[i],S[j]两个元素不能进入同一个栈 <=> 存在k,满足i<j<k,使得S[k]<S[i]<S[j]. 证明略过,请参考sqybi.尝试后可以发现结论P是正确的.
把每个元素按照输入序列中的顺序编号,看作一个图中的每个顶点.这时,我们对所有的(i,j)满足i<j,判断是否满足结论P,即S[i],S[j]两个元素能否进入同一个栈.如果满足P,则在i,j之间连接一条边.
我们对图染色,由于只有两个栈,我们得到的图必须是二分图才能满足条件.由于要求字典序最小,即尽量要进入栈1,我们按编号递增的顺序从每个未染色的顶点开始染色,相邻的顶点染上不同的色,如果发生冲突,则是无解的.否则我们可以得到每个顶点颜色,即应该进入的栈.
接下来就是输出序列了,知道了每个元素的决策,直接模拟了.
在判断数对(i,j)是否满足P时,枚举检查是否存在k的时间复杂度是O(n),则总的时间复杂度是O(n^3),对于n=1000是太大了.这原因在于过多得枚举了k,我们可以用动态规划把枚举k变为O(1)的算法.
设F[i]为Min{S[i],S[i+1],S[i+2]..S[n-1],S[n]},状态转移方程为F[i]=Min{ S[i] , F[i+1] }.边界为F[N+1]=极大的值.
判断数对(i,j)是否满足P,只需判断(S[i]<S[j] 并且 F[j+1]<S[i])即可.时间复杂度为O(n^2).
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <stack>
using namespace std;
const int maxn = 1000+5;
bool Edge[maxn][maxn];
int s[maxn],F[maxn], color[maxn];
stack<int> staA,staB;
int n;
void NoAnswer()
{
printf("0\n");
exit(0);
}
void dfs(int x, int c)
{
color[x] = c;
for (int i = 1; i <= n; ++i)
if (Edge[x][i])
{
if (color[i] == c ) NoAnswer();
if (!color[i])
dfs(i, 3-c);
}
}
int main()
{
cin>>n;
for ( int i = 1 ; i <= n ; ++i) cin>>s[i];
F[n+1] = 0x7fffffff;
for (int i = n; i>=1; --i) F[i] = min(s[i], F[i+1]);
for (int i = 1; i < n ; ++i)
for (int j = i+1; j <=n ;++j)
if (s[i] < s[j] && F[j+1]<s[i])
Edge[i][j] = Edge[j][i] = true;
for (int i = 1; i <= n;++i)
if ( !color[i]) dfs(i,1);
int aim = 1;
for (int i = 1; i <= n; ++i)
{
if (color[i]==1)
{
staA.push(s[i]);
printf("a ");
} else
{
staB.push(s[i]);
printf("c ");
}
while (!staA.empty() && staA.top() == aim ||
!staB.empty() && staB.top()== aim)
{
if (!staA.empty() && staA.top()== aim)
{
staA.pop();
printf("b ");
} else
{
staB.pop();
printf("d ");
}
aim ++;
}
}
return 0;
}