在Spark-1.3新加的最重要的新特性之一DataFrame的引入,很类似在R语言中的DataFrame的操作,使得Spark-Sql更稳定高效。
1、DataFrame简介:
在Spark中,DataFrame是一种以RDD为基础的分布式数据据集,类似于传统数据库听二维表格,DataFrame带有Schema元信息,即DataFrame所表示的二维表数据集的每一列都带有名称和类型。
类似这样的
root
|-- age: long (nullable = true)
|-- id: long (nullable = true)
|-- name: string (nullable = true)
2、准备测试结构化数据集
people.json
{"id":1, "name":"Ganymede", "age":32}
{"id":2, "name":"Lilei", "age":19}
{"id":3, "name":"Lily", "age":25}
{"id":4, "name":"Hanmeimei", "age":25}
{"id":5, "name":"Lucy", "age":37}
{"id":6, "name":"Tom", "age":27}
3、通过编程方式理解DataFrame
1) 通过DataFrame的API来操作数据
import org.apache.spark.sql.SQLContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.log4j.Level
import org.apache.log4j.Logger
object DataFrameTest {
def main(args: Array[String]): Unit = {
//日志显示级别
Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.ERROR)
//初始化
val conf = new SparkConf().setAppName("DataFrameTest")
val sc = new SparkContext(conf)
val sqlContext = new SQLCo