自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

微信号:RunsenLiu

不喜欢搞学术和技术,喜欢money更多点

  • 博客(1373)
  • 资源 (171)
  • 问答 (12)
  • 收藏
  • 关注

原创 基于Django框架开发的音乐播放和分享平台

"我的音乐"是一个基于Django框架开发的在线音乐播放和分享平台,提供用户注册与登录、在线音乐播放、歌词同步显示、智能搜索推荐、歌曲评论互动及音乐排行榜等功能。项目采用Python 3.10+、MySQL数据库,前端使用HTML5/CSS3和JavaScript,支持响应式设计。部署环境包括Docker容器化、Nginx反向代理和uWSGI应用服务器。用户可通过简单的配置步骤快速启动项目,享受完整的在线音乐体验。项目源码可通过联系作者获取。

2025-05-09 08:02:53 577

原创 基于Django技术实现的酒店管理项目

该项目是基于Django技术开发的一套酒店管理系统,系统应用浏览器/服务期(Browser/Server)架构。系统主要包括员工用户功能和管理员用户功能两部分。开发员工信息管理、顾客信息管理、会员信息管理、停车场信息管理、餐厅信息管理、客房信息管理、餐饮订单管理、客房订单管理等功能,管理人员只需要操作系统就可以快捷、方便地完成对酒店管理的各项任务。

2025-05-08 08:00:47 439

原创 基于Django和Bootstrap开发的美食推荐系统

该项目基于Django和Bootstrap实现,旨在为用户提供个性化的美食推荐。系统通过爬虫抓取美食数据并利用ECharts实现数据分析和可视化,帮助用户更直观地了解美食推荐的内容。项目的后端使用MySQL数据库进行数据存储,并且通过Django ORM进行高效的数据库操作。美食数据的爬取与存储美食数据的可视化展示(使用 ECharts)用户友好的前端展示(使用 Bootstrap)

2025-05-08 07:42:45 897

原创 基于Django实现的篮球论坛管理系统

随着体育教育的普及,篮球作为一种广受欢迎的运动,吸引了大量的青少年和成人参与。为了帮助篮球爱好者更加系统地学习篮球技巧、了解篮球战术,设计一个篮球教学论坛平台成为当务之急。此项目旨在利用现代Web技术为篮球爱好者提供一个信息共享、交流互动、技术指导的网络平台。本项目通过Django、SQLite3、HTML5等技术实现了一个篮球教学论坛,具备了用户管理、帖子发布、评论、篮球技巧学习等多种功能。通过不断的测试与优化,确保系统的稳定性和用户体验,最终实现了一个高效、实用的篮球学习平台。

2025-05-08 07:24:29 751

原创 基于Django框架开发的企业级IT资产管理系统

资产管理系统是一个基于Django框架开发的企业级IT资产管理平台,专注于数据中心和IT设备的全生命周期管理。该系统提供了完整的资产管理功能,包括设备管理、数据中心管理、用户权限管理等核心功能。

2025-05-07 23:03:50 698

原创 基于Django框架开发的B2C天天生鲜电商平台

天天生鲜是一个基于Django框架开发的B2C(Business-to-Customer)电商平台,专注于生鲜食品的在线销售。该项目采用了主流的Python Web开发框架Django,结合MySQL数据库、Redis缓存等技术,实现了一个功能完整、界面友好的电商网站。

2025-05-07 22:40:09 410

原创 基于Django框架的股票分红数据爬虫和展示系统

本股票分红数据爬虫和展示系统为用户提供了一个便捷的方式来获取和分析股票分红数据。通过简单的安装和配置步骤,用户可以快速搭建起自己的系统,并使用系统提供的各种功能进行数据查询、导出和图表展示。在使用过程中,用户需要注意遵守相关法律法规,确保数据的合法使用。希望本系统能够为用户的投资研究提供一定的帮助。

2025-05-07 08:11:48 1119

原创 基于Django汽车数据分析大屏可视化系统项目

本项目是一个基于 Python 的汽车数据分析大屏可视化系统,旨在通过直观的可视化界面展示汽车相关数据,帮助用户更好地理解和分析汽车市场动态、车辆性能等信息。系统采用前后端分离的架构,前端使用 Vue 3 框架搭建用户界面,后端使用 Django 框架处理业务逻辑和数据存储,结合 Echart、DataV 等工具实现数据的动态刷新渲染和图表展示。项目截图。

2025-05-07 06:45:57 712

原创 基于Django实现农业生产可视化系统

农业生产可视化系统是一款基于Django+MVT+MySQL架构的Web应用,主要用于农业指标和气象数据的分析与可视化展示。本系统采用简洁易懂的技术栈,特别适合Python Web初学者学习和使用。农业指标数据:包括粮食产量、蔬菜产量等多种农业生产指标气象数据:包括各地区气温、降水量等气象信息本系统集成了数据爬取、清洗、存储和可视化等功能,为农业数据分析提供了全方位解决方案。

2025-04-18 20:22:32 839

原创 基于Djiango实现中药材数据分析与可视化系统

中药材数据分析与可视化系统是一个基于Django框架开发的专业Web应用,致力于对各类中药材数据进行全面、系统的采集、分析和可视化展示。本系统结合现代计算机技术与传统中医药知识,利用网络爬虫技术从专业药材网站获取丰富的数据资源,通过科学的数据清洗和处理手段,以直观的图表形式呈现药材的价格走势、产地分布、使用频率等多维度信息,为中药材研究、市场交易和临床使用提供全方位的数据支持和决策参考。

2025-04-18 07:29:56 2102 1

原创 基于Django实现的图书分析大屏系统项目

图书分析大屏展示系统是一个功能完善、界面美观的Web应用,集成了数据采集、清洗、分析和可视化等多种功能。该系统采用Django+MySQL技术栈,具有良好的扩展性和维护性。通过本教程,您可以轻松部署和运行该系统,并根据需求进行二次开发和功能扩展。无论是作为毕业设计、课程设计还是练习项目,本系统都能帮助您理解并实践Web开发、数据处理和可视化的相关知识,提升您的技术能力和项目经验。

2025-04-17 19:48:30 982

原创 1251 - Client does not support authentication protocol requested by server

通常发生在较新的 MySQL 服务器(如 MySQL 8.0+)与旧版客户端工具(如 MySQL Workbench、Navicat 或某些程序)连接时,原因是 MySQL 8.0 默认使用了更安全的 caching_sha2_password。如果不想修改服务器配置,可以升级客户端工具(如 MySQL Workbench、Navicat 或程序依赖的 MySQL 连接库)到最新版本,以支持。认证插件,而旧客户端可能只支持旧的 mysql_native_password。,因为它既安全又灵活。

2025-04-01 07:30:38 698

原创 21 | 分析中证医药ETF跌幅情况

例如,2021年6月和2022年9月,这两个季度的跌幅分别达到了14.83%和17.72%,这表明在某些季度,ETF的表现极为不理想,投资者面临较大的损失。:通过计算每日的涨跌幅,我们可以观察到,ETF的价格波动并不平稳,特别是在某些特定日期,跌幅较大。:对于打算投资中证医药ETF的投资者,建议在未来进行投资时,充分了解行业的周期性波动,并在决定投资时谨慎评估市场风险。通过对这些数据的分析,我们可以计算出每日的涨跌幅、累计收益、以及每季度的跌幅,从而全面揭示该ETF的波动性和长期走势。

2025-02-09 18:44:11 146

原创 20 | 基金类型可视化

通过基金类型的分布分析,我们可以看到,市场上混合型基金和指数型基金占据了主导地位,显示出投资者对这些类型的青睐。在投资市场中,基金作为一种重要的理财工具,其种类繁多,投资者往往依据基金类型来选择合适的投资对象。在未来,随着市场环境的变化,基金类型的分布可能会发生变化,但目前这些基金类型的分布反映了不同风险偏好的投资者对市场的需求。本文通过爬取天天基金网站的数据,整理并分析了各类基金的分布情况。通过对基金类型的统计分析,我们能够直观地了解市场上最常见的基金类型及其分布。获取了所有基金的基本信息。

2025-02-09 17:29:38 92

原创 绘制中国平安股价的交互式 K 线图

在本文中,探索如何使用 Python 的强大库进行股市数据分析与可视化。sh601318)为例,展示如何获取其股票数据,并绘制一张交互式 K 线图。K 线图是股市分析中不可或缺的工具,它能够直观地显示股票的波动情况,包括开盘价、收盘价、最高价和最低价。此外,我们还将结合5日和10日均线,进一步分析股票的趋势。通过这些交互式图表,您不仅可以轻松跟踪股市动态,还能更直观地理解股价变化。

2025-02-09 16:56:15 327

原创 019 | backtrader回测布林带突破策略

布林带突破策略(Bollinger Bands Breakout Strategy)是一种基于布林带指标的交易策略。布林带是一种技术分析工具,由约翰·布林格(John Bollinger)在20世纪80年代提出。布林带由一条中间的简单移动平均线(SMA)以及上下两条波动带(通常是2个标准差)构成,用于衡量价格的波动范围。布林带突破策略利用价格突破布林带上下轨的信号来生成买卖决策。该策略假设,当价格突破布林带上轨时,市场可能会延续上涨趋势;当价格跌破布林带下轨时,市场可能会延续下跌趋势。

2024-08-11 11:02:12 1273

原创 018 | backtrader回测反转策略

反转策略(Reversal Strategy)是一种试图捕捉市场价格趋势逆转的交易策略。与趋势跟随策略不同,反转策略的核心理念是“物极必反”,即价格在经过一段时间的单边趋势后,往往会出现逆转的机会。交易者通过识别这些即将到来的反转点,在市场趋势反转时进行买卖操作,从而获取利润。反转策略是一种试图捕捉市场价格转折点的交易策略,通过在市场超买或超卖状态下进行反向操作,交易者可以在市场反转时获取利润。然而,由于反转点的预测难度较大,该策略具有较高的风险和不确定性。

2024-08-11 10:59:05 1111

原创 017 | backtrader回测趋势跟随策略

趋势跟随策略(Trend Following Strategy)是一种基于市场趋势的交易策略。其核心理念是“趋势是你的朋友”(The trend is your friend),即一旦市场显示出明确的趋势方向(无论是上涨还是下跌),该策略就会跟随这一趋势进行交易,直到市场趋势发生反转。趋势跟随策略不试图预测市场的转折点,而是通过识别并跟随现有的趋势来获取利润。趋势跟随策略是一种经典的交易策略,通过识别并跟随市场趋势来获取利润。尽管在震荡市场中可能表现不佳,但在明确的趋势市场中,该策略往往能带来可观的收益。

2024-08-11 10:54:21 1051

原创 016 | backtrader回测波动率策略

波动率策略(Volatility Strategy)是一种基于市场波动性的交易策略。波动率反映了资产价格的波动幅度,通常用来衡量市场的不确定性和风险。波动率策略通过分析和利用波动率的变化,来制定买卖决策。这类策略可以在波动性增加时捕捉市场波动带来的机会,或者在波动性下降时调整持仓以避免风险。波动率策略是一种重要的市场工具,尤其在高波动性环境下,通过对波动性的分析和利用,投资者可以捕捉市场波动带来的机会,并有效管理风险。

2024-08-11 10:48:26 1872

原创 015 | backtrader回测动量策略

动量策略(Momentum Strategy)是一种基于资产价格或收益动量的交易策略。动量策略假设“强者恒强,弱者恒弱”,即近期表现强劲的资产在未来仍可能延续其趋势,而近期表现疲软的资产在未来可能继续走弱。因此,动量策略的核心思想是买入那些表现良好的资产,卖出或做空表现不佳的资产。起始资金:100,000元最终资金:101,831.91元策略表现:回测结果显示,动量策略在此段时间内实现了小幅盈利,资金增加了约1,831.91元。尽管策略频繁买卖,最终的盈利结果表明该策略在这个特定时间段内有效。

2024-08-11 10:38:00 1047

原创 014 | backtrader回测均值回归策略

均值回归策略(Mean Reversion Strategy)是一种基于统计学原理的交易策略,假设金融资产的价格会回归其长期平均水平或“均值”。这种策略假设资产价格在短期内可能会偏离其历史均值,但最终会回归到该均值。这种偏离均值的现象在市场中被视为暂时性的机会,因此交易者可以通过在价格偏离均值时买入或卖出资产,从中获利。起始资金:100,000元最终资金:98,306.92元策略表现:回测结果显示,均值回归策略在此段时间内并未能带来盈利,反而导致了资金的略微缩水(亏损约1,693.08元)。

2024-08-11 10:21:44 1299

原创 013 | backtrader回测沪深300指数简单移动平均线交叉策略

简单移动平均线(SMA)是某一段时间内价格的平均值。策略通常使用两条SMA:一条短周期SMA(例如10天)和一条长周期SMA(例如30天)。买入信号当短周期SMA上穿长周期SMA时,产生买入信号。这意味着短期价格趋势强于长期趋势,可能预示着价格将继续上涨。卖出信号当短周期SMA下穿长周期SMA时,产生卖出信号。这意味着短期价格趋势变弱,可能预示着价格将下跌。简单移动平均线交叉策略是技术分析中的一个基础策略,它利用不同周期均线的交叉来判断市场趋势并做出交易决策。

2024-08-11 10:13:22 1667

原创 012 | akshare分析NYBOT棉花历史数据

在Akshare库中,行业与公司数据的获取是非常重要的一部分,尤其是对从事行业研究和公司基本面分析的人来说。这张图展示了纽约期货交易所(NYBOT)棉花历史价格数据与两条简单移动平均线(SMA)的关系。该图表通过结合历史价格数据与短期和长期的移动平均线,帮助分析者识别买入和卖出的潜在机会点。👉👉👉 《玩转Python金融量化专栏》👈👈👈。👉👉👉 《玩转Python金融量化专栏》👈👈👈。订阅本专栏的可以下载对应的代码和数据集。订阅本专栏的可以下载对应的代码和数据集。

2024-08-11 09:57:34 251

原创 011 | efinance分析豆一主连期货

这个图表通过结合豆一的价格走势与两条关键的SMA线条,直观地展示了价格趋势的变化以及买卖信号的触发点。投资者可以通过这些信号做出更为理性的交易决策,从而在市场波动中获得更好的收益。通过这种技术分析方法,可以有效地捕捉市场中的趋势反转点,为投资决策提供重要的参考依据。👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集🚀上一篇🌟下一篇⬅️ 010 东方财富帖子标题情绪分析012 akshare分析NYBOT棉花历史数据 ➡️。

2024-08-11 08:58:16 321

原创 010 | 东方财富帖子标题情绪分析

👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集。

2024-08-10 20:47:59 271

原创 009 | 上证50ETF基金数据分析及预测

👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集。

2024-08-10 20:41:40 377

原创 008 | 基于RNN和LSTM的贵州茅台股票开盘价预测

本项目旨在通过使用Tushare下载贵州茅台的股票数据,并基于这些历史数据,使用TensorFlow 2.0实现循环神经网络(RNN)和长短期记忆网络(LSTM)来预测股票的开盘价。本项目提供了完整的数据获取、处理、模型构建和预测的流程。

2024-08-10 20:32:14 696

原创 007 | 期权定价与布莱克-斯科尔斯计算

👉👉👉 《玩转Python金融量化专栏》👈👈👈 订阅本专栏的可以下载对应的代码和数据集布莱克-斯科尔斯公式是金融工程学中的一项重要成就,用于计算欧式期权(只能在到期日行权)的理论价格。它假设市场是有效的,资产价格服从几何布朗运动。布莱克-斯科尔斯公式计算看涨期权(Call Option)和看跌期权(Put Option)价格的公式如下:C=S0⋅N(d1)−X⋅e−rT⋅N(d2)C = S_0 \cdot N(d_1) - X \cdot e^{-rT} \cdot N(d_2)C=S0​

2024-08-10 20:24:53 152

原创 006 | 资本资产定价模型 (CAPM)

👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集资本资产定价模型 (CAPM) 是金融学中用于评估资产(如股票)的预期回报率的一种模型。它帮助投资者理解某种资产的回报率如何与其风险水平相关联。

2024-08-10 20:01:46 176

原创 005 | 马科维茨投资组合理论实现

马科维茨投资组合理论(Markowitz Portfolio Theory)是现代投资组合理论的奠基石,由哈里·马科维茨(Harry Markowitz)于1952年提出。这一理论为投资组合管理引入了数学的精确性,奠定了现代金融学的重要基础。通过量化的方式,马科维茨理论为投资者提供了在多资产投资组合中如何优化资产配置的方法,以实现特定的投资目标。数据获取:使用Tushare获取指定股票的历史收盘价数据,并计算每日收益率。风险与收益计算:基于收益率数据,计算每个股票的预期收益和协方差矩阵。优化。

2024-08-10 16:46:26 1019

原创 Python金融量化专栏简介

👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集。

2024-08-10 16:01:49 379

原创 002 | 常见的金融量化指标计算

通过上述代码,我们展示了如何使用 Tushare 获取股票数据,并计算多种常见的金融量化指标。这些指标可以帮助分析市场趋势、评估风险和收益,从而构建更为复杂的交易策略。在实际应用中,可以根据自己的需求调整指标的参数和选择的时间窗口,并结合其他数据源和工具进行更深入的分析。

2024-08-10 15:49:47 1633

原创 74| 前程无忧python岗位信息爬取和分析

爬取2023年前程无忧网站上搜索关键字“python”,所得到的数据约1000多条(只有这么多),并对这些数据进行清洗,分析及可视化处理。包括不同学历要求下岗位数量分布,不同工作经验相对真实月薪,各地区相对真实月薪,各城市地区的岗位数量分布,福利待遇关键词,平均月薪,公司最喜欢招聘有多少年经验的人等7种分析。

2024-08-09 07:10:36 323

原创 72 | 数据分析岗位招聘数据可视化

本项目旨在通过对智联招聘网站上发布的数据分析岗位信息的分析和可视化,帮助应届毕业生和希望进入数据分析行业的专业人士更好地理解当前的就业市场。通过收集包含职位名称、薪资范围、地点、工作经验、学历要求等关键信息的数据,项目深入探讨了数据分析岗位的多个维度。

2024-07-23 20:42:53 348

原创 70 | 双十一美妆数据分析可视化

双十一,作为全球最大的购物狂欢节,提供了丰富的数据资源,特别是在美妆产品类别中。美妆品牌在这一天提供各种优惠和折扣,吸引了大量消费者。本项目旨在分析和可视化双十一期间淘宝美妆品类的销售数据,帮助消费者洞察不同品牌的折扣策略,并评估各品牌产品的性价比。通过精心设计的图表,项目详细展示了各类数据分析结果,包括商品分类、商品数量分布、不同品牌的折扣率、打折套路以及商品折扣率。本项目使用的数据源为双十一期间的淘宝美妆销售数据,包括商品分类、品牌、价格、折扣率等信息。

2024-07-23 20:30:25 566

原创 67| 上海市互联网行业招聘数据集的构建与可视化分析

在对单个职位的数据进行清洗后,我将所有职位的数据整合成一个统一的数据集,方便进行综合分析。集经过清洗和处理,包含了各职位的职位名称、公司名称、公司类型及规模、学历要求、技能要。名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资等信息。分析互联网行业的总体薪资和各职位的薪资分布可以帮助求职者了解不同职位的薪资水平。总之,本项目的研究为进一步探索和分析互联网行业的职位需求提供了有力支持,未来的研究。职位名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资。

2024-07-21 14:50:11 494

原创 Tensorflow深度学习系列专栏简介

在深度学习系列专栏中,我们将深入探讨TensorFlow两个领先的深度学习框架,为读者提供全面而实用的知识。专栏始于深度学习的基础概念,包括神经网络结构、前馈与反向传播等核心知识,为初学者提供坚实的基础。通过这一系列,我们旨在为读者提供一个全面的学习路径,帮助初学者建立深度学习的基础,同时为有经验的开发者提供深入探讨框架内部机制的机会。我们相信这个专栏将为深度学习爱好者和从业者提供有价值的学习资源,助力大家更好地理解和应用深度学习技术。

2024-02-26 06:49:57 910 2

原创 9 | Tensorflow io流和 tfrecord读取操作

tf.io模块是 TensorFlow 中用于处理输入输出(I/O)操作的工具模块,提供了许多常见的函数,用于读写文件、处理图像、序列化和反序列化数据等。以下是一些常见的tf.io这些函数提供了在 TensorFlow 中进行常见 I/O 操作所需的工具。具体的使用方式可以根据你的任务和数据类型进行调整。

2024-01-19 08:27:58 889

原创 8 | Tensorflow中的batch批处理

TensorFlow支持批处理(batch processing)。批处理是指同时处理多个样本或数据点而不是单个样本。在深度学习中,批处理通常用于提高训练的效率和稳定性。在TensorFlow中,可以使用 API来设置和处理批处理数据。这允许以批处理的方式加载和处理数据,适用于训练神经网络模型。以下是一个简单的TensorFlow批处理的示例代码:这个例子中, 用于将输入数据切片成小批次,然后通过 和 方法进行打乱和批处理。常见的批处理操作主要涉及 TensorFlow 中的 类和相关函数,用于处理

2024-01-16 07:31:42 780

原创 13 | 使用代理ip爬取安居客房源信息

在上述代码中,通过调用代理API获取代理IP,然后在爬虫请求中使用这些代理IP,从而达到绕过反爬虫机制、提高稳定性和保护隐私的目的。需要注意的是,在使用代理IP时,应确保遵守相关法规和网站的使用条款,以免引起不必要的法律问题。该爬虫使用了代理IP来绕过可能的封禁,并提供了一些基本的信息抽取功能。通过使用代理IP,可以更换请求的源IP,减少被封锁的风险。通过使用代理IP,可以模拟不同地理位置的访问,获取更全面的数据。代理IP服务商通常提供稳定的网络连接和高质量的IP地址,可以提高爬虫的稳定性和可靠性。

2024-01-14 20:56:42 824

基于Django技术实现的酒店管理项目.zip

酒店管理项目 该项目是基于Django技术开发的一套酒店管理系统,系统应用浏览器/服务期(Browser/Server)架构。系统主要包括员工用户功能和管理员用户功能两部分。开发员工信息管理、顾客信息管理、会员信息管理、停车场信息管理、餐厅信息管理、客房信息管理、餐饮订单管理、客房订单管理等功能,管理人员只需要操作系统就可以快捷、方便地完成对酒店管理的各项任务。 项目需求 员工信息管理模块:管理员成功登录系统,进入员工管理页面对员工信息进行增加、删除、修改和查询。 顾客信息管理模块:管理员成功登录系统,进入顾客管理页面对顾客信息进行增加、删除、修改和查询。同时展示所有顾客的基本信息。 会员信息管理模块:管理员成功登录系统,进入会员管理页面对会员信息进行增加、删除和修改,管理员可根据条件进行综合查询和浏览会员信息。 停车场信息管理模块:管理员成功登录系统,进入停车场管理页面对车辆信息进行增加、修改和删除,同时可以进行信息的查询和浏览。 餐厅信息管理模块:管理员可对菜品信息进行添加、修改和删除操作。 客房信息管理模块:管理员成功登录系统,进入客房信息管理页面对客房信息进行新增、修改、删除和查询操作。 餐饮订单信息管理模块:管理员成功登录系统,进入餐饮订单管理页面录入新增的订单数据,修改订单信息,浏览订单当前状态。 客房管理模块:维护管理包括增删改查功能。可以根据客房订单编号、菜名、客房订单价格、厨师编号等基本信息查询客房订单的基本信息。 ———————————————— liurunsen 原文链接:https://blog.csdn.net/weixin_44510615/article/details/147778970

2025-05-08

基于Django和Bootstrap开发的美食推荐系统.zip

项目介绍 该项目基于 Django 和 Bootstrap 实现,旨在为用户提供个性化的美食推荐。系统通过爬虫抓取美食数据并利用 ECharts 实现数据分析和可视化,帮助用户更直观地了解美食推荐的内容。项目的后端使用 MySQL 数据库进行数据存储,并且通过 Django ORM 进行高效的数据库操作。 系统的主要功能包括: 美食数据的爬取与存储 美食的收藏与评论 美食数据的可视化展示(使用 ECharts) 用户友好的前端展示(使用 Bootstrap) ———————————————— 原文链接:https://blog.csdn.net/weixin_44510615/article/details/147778844

2025-05-08

基于Django实现的篮球论坛管理系统.zip

项目基于 Django 的 MTV 架构,以 SQLite3 作为数据库,实现高效数据存储与管理;前端采用 HTML5、CSS3 和 JavaScript,打造简洁美观且交互流畅的界面。核心功能涵盖用户管理、论坛互动、篮球技巧学习三大模块:用户可完成注册登录、管理个人资料;在论坛中自由发布、评论帖子,与其他爱好者互动交流;通过管理员发布的篮球技巧文章及用户分享的教学视频,获取专业的篮球知识。 原文链接:https://blog.csdn.net/weixin_44510615/article/details/147778722

2025-05-08

基于Django框架开发的企业级IT资产管理系统.zip

资产管理系统是一个基于Django框架开发的企业级IT资产管理平台,专注于数据中心和IT设备的全生命周期管理。该系统提供了完整的资产管理功能,包括设备管理、数据中心管理、用户权限管理等核心功能。 Python 3.8+ Django 5.1.3 Django REST framework MySQL 8.0+ 前端 Bootstrap 5 Font Awesome 5 JavaScript/jQuery AJAX 异步请求 响应式设计 第三方库 django-filter:实现高级过滤功能 django-import-export:Excel数据导入导出 django-simple-history:数据变更历史记录 mysqlclient:MySQL数据库驱动 python-dotenv:环境变量管理 ————————————————

2025-05-07

基于Django框架开发的B2C天天生鲜电商平台.zip

天天生鲜是一个基于Django框架开发的B2C(Business-to-Customer)电商平台,专注于生鲜食品的在线销售。该项目采用了主流的Python Web开发框架Django,结合MySQL数据库、Redis缓存等技术,实现了一个功能完整、界面友好的电商网站。

2025-05-07

基于Django汽车数据分析大屏可视化系统项目

本项目是一个基于 Python 的汽车数据分析大屏可视化系统,旨在通过直观的可视化界面展示汽车相关数据,帮助用户更好地理解和分析汽车市场动态、车辆性能等信息。系统采用前后端分离的架构,前端使用 Vue 3 框架搭建用户界面,后端使用 Django 框架处理业务逻辑和数据存储,结合 Echart、DataV 等工具实现数据的动态刷新渲染和图表展示。### 2.2 前端架构 前端使用 Vue 3 框架,结合 Vue-cli 进行项目构建和管理。Vue 3 具有响应式数据绑定、组件化开发等特性,能够提高开发效率和代码可维护性。同时,项目使用了 DataV 和 Echart 框架,DataV 提供了丰富的可视化组件,Echart 则用于创建各种类型的图表,如折线图、柱状图、饼图等。前端项目的主要文件结构如下: - `main.js`:主目录文件,引入 Echart、DataV 等文件。 - `utils`:工具函数与 mixins 函数等。 - `views/index.vue`:项目主结构。 - `views/其余文件`:界面各个区域组件(按照位置来命名)。 - `assets`:静态资源目录,放置 logo 与背景图片。 - `assets/style.scss`:通用 CSS 文件,全局项目快捷样式调节。 - `assets/index.scss`:Index 界面的 CSS 文件。 - `components/echart`:所有 echart 图表(按照位置来命名)。 - `common/...`:全局封装的 ECharts 和 flexible 插件代码(适配屏幕尺寸,可定制化修改)。 ### 2.3 后端架构 后端使用 Django 框架,Django 是一个功能强大的 Python Web 框架,具有高效的数据库操作、路由管理、用户认证等功能。后端负责处理业务逻

2025-05-07

基于Django实现农业生产可视化系统

农业生产可视化系统是一款基于Django+MVT+MySQL架构的Web应用,主要用于农业指标和气象数据的分析与可视化展示。本系统采用简洁易懂的技术栈,特别适合Python Web初学者学习和使用。 系统实现了两大类数据的可视化分析: - 农业指标数据:包括粮食产量、蔬菜产量等多种农业生产指标 - 气象数据:包括各地区气温、降水量等气象信息 本系统集成了数据爬取、清洗、存储和可视化等功能,为农业数据分析提供了全方位解决方案。 ### 1. 用户管理 系统提供完整的用户管理功能: - 用户注册:新用户可以通过注册页面创建账号 - 用户登录:已注册用户可通过登录页面进入系统 - 权限控制:区分普通用户和管理员权限 ### 2. 农业数据分析 本模块提供多种形式的农业数据可视化: - 表格展示:以表格形式直观展示各省市的农业指标数据 - 柱状图展示:直观比较不同地区之间的数据差异 - 饼图展示:清晰显示各地区数据的占比情况 用户可以选择不同的农业指标,如粮食产量、蔬菜产量等进行查看和分析。 ### 3. 气象数据分析 气象数据模块提供以下可视化形式: - 平均气温地图展示:通过地图形式展示各地区的气温分布情况 - 降水量合并图展示:以图表形式展示各地区的降水量数据 用户可以根据月份筛选数据,了解不同时期的气象变化情况。

2025-04-18

基于django实现的中药材数据分析与可视化系统

中药材数据分析与可视化系统是一个基于Django框架开发的专业Web应用,致力于对各类中药材数据进行全面、系统的采集、分析和可视化展示。本系统结合现代计算机技术与传统中医药知识,利用网络爬虫技术从专业药材网站获取丰富的数据资源,通过科学的数据清洗和处理手段,以直观的图表形式呈现药材的价格走势、产地分布、使用频率等多维度信息,为中药材研究、市场交易和临床使用提供全方位的数据支持和决策参考。 ## 三、系统功能 ### 3.1 数据采集功能 系统通过reptile.py爬虫程序实现对中药材数据的自动采集,主要采集内容包括: - 各种药材的药方配置与使用方法 - 不同产地药材的价格信息 - 药材历史价格变动数据 - 药材供应产地分布情况 - 药材市场资讯与新闻动态 爬虫程序具有以下特点: - 支持自定义药材关键词搜索 - 自动识别药材ID并采集相关数据 - 数据分类整理并保存至CSV文件 - 支持数据自动入库 ### 3.2 数据可视化功能 系统利用Echarts图表库实现数据的可视化展示,主要图表类型包括: - **柱状图**:展示药材价格对比和使用频率Top20 - **饼图**:显示药材产地分布占比 - **折线图**:展示药材历史价格走势 - **表格**:展示药材市场资讯和详细数据 每个图表都具有交互功能,用户可以通过鼠标悬停、点击等操作获取更详细的数据信息。 ### 3.3 用户功能 - **用户注册**:新用户可通过注册页面创建账号 - **用户登录**:已注册用户通过账号密码登录系统 - **数据浏览**:用户可浏览系统中各类药材数据和图表 - **个人信息管理**:用户可修改个人信息和账户设置 ### 3.4 管理员功能 - **用户管理**:查看、编辑和删除用户信息 - **数据管理**:管理系统中的药材数据 - **内容审核**:

2025-04-17

京东图书分析大屏展示系统项目

## 一、项目概述 图书分析大屏展示系统是一个基于Django框架开发的Web应用,主要用于图书数据的可视化分析与展示。该系统采用MVT(Model-View-Template)架构模式,结合MySQL数据库,实现了图书数据的采集、清洗、存储、分析和可视化展示等功能。系统界面简洁大气,功能齐全,适合作为毕业设计或课程设计项目。 该系统主要特点包括: - 基于Python Django框架开发,采用MVT架构 - 使用MySQL数据库进行数据存储 - 前端采用Bootstrap和jQuery等主流框架 - 集成爬虫功能,可自动采集图书数据 - 内置数据清洗模块,保证数据质量 - 可视化展示各类图书分析结果 - 支持用户注册登录和个性化推荐

2025-04-17

019 - backtrader回测布林带突破策略

布林带指标:通过 bt.indicators.BollingerBands 创建布林带指标,参数包括计算移动平均线的周期(period)和标准差倍数(devfactor)。 买入和卖出信号:当价格突破布林带的上轨时,策略生成买入信号;当价格跌破下轨时,策略生成卖出信号。 持仓管理:当持有多头头寸时,如果价格回落到布林带的中轨下方,则卖出平仓。对于空头头寸,价格回升至中轨上方时买入平仓。

2024-08-11

018 - backtrader回测反转策略

代码详解: RSI 指标:RSI 是相对强弱指数,用于衡量资产价格的超买和超卖状态。通常,当 RSI 超过70时,认为市场超买;当 RSI 低于30时,认为市场超卖。 买入信号:当 RSI 低于30,进入超卖区,策略生成买入信号,预期价格将反转上涨。 卖出信号:当 RSI 高于70,进入超买区,策略生成卖出信号,预期价格将反转下跌。 退出信号:当持仓时,如果 RSI 回到中性区间(50附近),则考虑平仓。

2024-08-11

017 - backtrader回测趋势跟随策略

趋势跟随策略是一种经典的交易策略,通过识别并跟随市场趋势来获取利润。尽管在震荡市场中可能表现不佳,但在明确的趋势市场中,该策略往往能带来可观的收益。成功的趋势跟随策略需要严格的纪律性、有效的风险管理措施,以及对市场趋势的敏锐识别能力。

2024-08-11

016 - backtrader回测波动率策略

交易盈亏点(Trades - Net Profit/Loss): 中间部分用红色和蓝色圆点表示每次交易的盈亏情况。蓝色圆点表示盈利交易,红色圆点表示亏损交易。 从图中可以看出,策略产生了相对较多的盈利交易点,同时也有一些亏损交易点。但整体来看,盈利的交易点多于亏损交易点。 总结: 起始资金:100,000元 最终资金:102,712元 策略表现:该波动率策略在回测期间实现了小幅盈利,资金增加了2,712元。图中显示,策略在市场波动性增加时能够有效捕捉到机会并产生一定的收益。然而,该策略的表现仍然受限于市场环境,尤其是在波动性较低或趋势不明显的市场中,策略可能表现不如预期。 这张图表提供了一个波动率策略的实际应用示例,展示了该策略如何利用市场波动性来进行交易,并最终对资金产生影响。

2024-08-11

015 - backtrader回测动量策略

动量指标(Momentum): 图表底部展示了动量指标的变化情况。动量指标基于一定的时间周期(此处为10天),反映了价格的变化趋势。 当动量指标为正时,价格趋势向上,策略产生买入信号;当动量指标为负时,价格趋势向下,策略产生卖出信号。 总结: 起始资金:100,000元 最终资金:101,831.91元 策略表现:回测结果显示,动量策略在此段时间内实现了小幅盈利,资金增加了约1,831.91元。尽管策略频繁买卖,最终的盈利结果表明该策略在这个特定时间段内有效。然而,动量策略的表现取决于市场的趋势性。在强趋势市场中,动量策略通常表现较好,但在震荡或反转市场中可能会面临更大的风险和挑战。

2024-08-11

014 - backtrader回测均值回归策略

1. **价格走势(主图)**: - 图表的主部分显示了标的资产的价格走势。价格走势曲线伴随着一个布林带(Bollinger Bands),其中蓝色实线代表20日简单移动平均线(SMA),蓝色虚线代表布林带的上下轨。 - 绿色的三角形表示策略在布林带下轨附近生成的买入信号,红色的倒三角形表示在布林带上轨附近生成的卖出信号。 2. **成交量(Volume)**: - 图表底部显示了对应时间段的成交量,以柱状图的形式展现。成交量的变化有助于了解市场活跃程度,特别是在触发买卖信号时。 3. **资金与资产价值变化(上方部分)**: - 上方部分显示了策略回测期间账户资金的变化情况。红色线条表示现金,蓝色线条表示总资产价值(包括未平仓的头寸)。起始资金为100,000元,最终资金为98,306.92元。 - 从图中可以看到资金曲线的波动,最终的资金略有减少,表明策略在整个回测期间总体上产生了亏损。 4. **交易盈亏点(Trades - Net Profit/Loss)**: - 中间部分用红色和蓝色圆点展示了每次交易的盈亏情况。蓝色圆点表示盈利交

2024-08-11

013 - backtrader回测沪深300指数简单移动平均线交叉策略

价格走势(主图): 图表的主部分显示了标的资产的价格走势。价格走势曲线伴随了两条简单移动平均线(SMA):蓝色线为30天的SMA,绿色线为10天的SMA。 当绿色的短期SMA上穿蓝色的长期SMA时,形成了买入信号(标注为绿色三角形),而当短期SMA下穿长期SMA时,形成了卖出信号(标注为红色倒三角形)。 成交量(Volume): 图表底部显示了对应时间段的成交量,表现为柱状图。成交量的大小可以帮助了解市场参与度和可能的价格动量。 资金与资产价值变化(上方部分): 图表的上方部分显示了初始资金(红线)和最终资金(蓝线)的变化情况。起始资金为100,000元,最终资金为101,865.98元。 这部分展示了随着策略执行过程中账户资金的波动。 交易盈亏点(Trades - Net Profit/Loss): 这一部分用红色和蓝色圆点展示了每次交易的盈亏情况。蓝色圆点表示盈利交易,红色圆点表示亏损交易。 可以看到,交易信号频繁出现,且盈亏点的分布较为平均。 总结: 起始资金:100,000元 最终资金:101,865.98元 策略表现:策略在回测期间实现了一定的盈利,但从图中可以看到策

2024-08-11

012 - akshare分析NYBOT棉花历史数据

展示了纽约期货交易所(NYBOT)棉花历史价格数据与两条简单移动平均线(SMA)的关系。 **图表描述:** 1. **价格走势**: - 蓝色曲线代表棉花的每日收盘价格,从2020年1月到2024年8月。 - 价格在2020年初经历了较低的水平,随后在2021年开始上涨,并在2022年达到高峰,之后有所回落。 2. **简单移动平均线(SMA)**: - 红色线表示50天的简单移动平均线(SMA50)。 - 绿色线表示200天的简单移动平均线(SMA200)。 - 可以看到,SMA50较快地反映了价格的短期变化,而SMA200则反映了价格的长期趋势。 3. **买入与卖出信号**: - 绿色三角形(向上)代表买入信号。 - 红色三角形(向下)代表卖出信号。 - 买入信号通常出现在SMA50向上穿过SMA200的位置(即黄金交叉),而卖出信号出现在SMA50向下穿过SMA200的位置(即死亡交叉)。 4. **时间轴与价格轴**: - X轴表示时间,日期从2020年1月到2024年8月。 - Y轴表示价格,从50左右

2024-08-11

011 - efinance分析豆一主连期货

展示了豆一(大豆期货主力合约)从早期到近期的价格历史走势,并结合了两条重要的技术分析指标——简单移动平均线(Simple Moving Average, SMA)进行分析。这些指标用于识别价格趋势并生成买卖信号。 价格走势 蓝色线条代表了豆一的历史收盘价格。可以看到,这条线条随着时间的推移呈现出明显的波动性,包括多个价格高峰和低谷。这种波动反映了市场对大豆的供需变化、全球经济环境以及其他相关因素的反应。 简单移动平均线(SMA) 红色线条(SMA50):这条线代表的是50天的简单移动平均线(即过去50天收盘价格的平均值)。SMA50是一种中期趋势指标,常用于识别价格的中期走势。由于它对较短时间内的价格变化更为敏感,因此通常比SMA200波动更大。 绿色线条(SMA200):这条线代表的是200天的简单移动平均线。作为一个长期趋势指标,SMA200被广泛用于识别长期的市场趋势。由于计算时间较长,它能够有效平滑价格波动,提供更稳定的趋势信号。 买卖信号 绿色三角形(买入信号):这些符号标注了一个重要的技术信号,即“金叉”。金叉是指短期移动平均线(在此为SMA50)向上突破长期移动平均

2024-08-11

010 - 东方财富帖子标题情绪分析

东方财富网股吧是一个投资者交流平台,用户在这里讨论股票、分享投资心得、发布市场预测。通过分析股吧中的帖子标题,可以了解市场情绪,对投资决策提供参考。本项目旨在通过爬取东方财富网股吧的帖子标题,进行情绪分析,并将结果可视化,帮助投资者更好地理解市场情绪的变化。 #### 项目目标 1. **数据收集**:爬取东方财富网股吧的帖子标题。 2. **情绪分析**:对爬取的帖子标题进行情绪分类,分为正面、负面和中性。 3. **数据可视化**:将情绪分析结果通过柱状图、折线图和饼图进行可视化展示。 #### 技术路线 1. **网页爬取**: - 使用 `requests` 库发送 HTTP 请求,获取东方财富网股吧的网页内容。 - 使用 `BeautifulSoup` 库解析网页内容,提取帖子标题。 2. **情绪分析**: - 使用 `TextBlob` 或 `NLTK` 等自然语言处理库对帖子标题进行情绪分析。 - 将情绪分为正面、负面和中性三类。 3. **数据可视化**: - 使用 `matplotlib` 和 `seaborn` 库生成柱状图、

2024-08-10

009 - 上证50ETF基金数据分析及预测

#### 项目目标 1. 获取并处理上证50ETF基金的历史数据。 2. 通过分析股票指标,探讨其与基金价格变化的关系。 3. 应用多种时间序列预测模型(如LSTM, GRU, 双向LSTM)对基金未来走势进行预测。 4. 对比不同模型的预测效果,选择最佳模型。

2024-08-10

008 - 基于RNN和LSTM的贵州茅台股票开盘价预测

本项目旨在通过使用Tushare下载贵州茅台的股票数据,并基于这些历史数据,使用TensorFlow 2.0实现循环神经网络(RNN)和长短期记忆网络(LSTM)来预测股票的开盘价。本项目提供了完整的数据获取、处理、模型构建和预测的流程。

2024-08-10

005 - 马科维茨投资组合理论实现

python基于tushare实现马科维茨投资组合理论实现

2024-08-10

002 - 常见的金融量化指标计算

Tushare 是一个用于获取中国市场数据的开源Python包。我们将使用 Tushare 下载股票数据并计算常见的指标。

2024-08-10

74- 前程无忧python岗位信息爬取和分析

74| 前程无忧python岗位信息爬取和分析

2024-08-09

73 - 基于Python的上海二手房数据爬取及分析

链家二手房数据分析(爬虫+jupyter+报告)

2024-07-24

本项目旨在通过对智联招聘网站上发布的数据分析岗位信息的分析和可视化,帮助应届毕业生和希望进入数据分析行业的专业人士更好地理解当前

技术栈 项目运用了Python的pandas库进行数据清洗和分析,通过pyecharts库创建了多种交互式图表,增强了数据的表现力和用户的交互体验。最终,使用Flask框架将分析结果通过Web页面形式呈现,使得数据分析结果更加直观且易于理解。 数据分析目标 地域分布:通过地图展示不同省份和城市的数据分析岗位数量,分析地区差异。 薪资和学历关系:通过环形图和柱状图探索不同学历要求对薪资范围的影响。 行业需求:分析数据分析需求最高的行业和公司规模,以及技能要求,帮助求职者针对性准备。 关键问题解答 哪些地区对数据分析专业人才的需求最大? 影响数据分析岗位薪资的主要因素有哪些? 求职数据分析岗位通常需要哪些技能和资质? 数据来源与处理 项目的原始数据来源于智联招聘网,涵盖了全国范围内的6263条数据分析岗位信息。在数据清洗过程中,我们对数据进行了去重、填充缺失值、异常值处理等,确保数据的准确性和分析的有效性。 项目成果 项目成功构建了一个包含多个交互式图表的Web应用,提供了一种直观、易于理解的方式来查看数据分析岗位的市场趋势和关键洞察。此外,该项目的完成不仅加深了我对数据分析行业的理解

2024-07-23

70 - 双十一美妆数据分析可视化

双十一,作为全球最大的购物狂欢节,提供了丰富的数据资源,特别是在美妆产品类别中。美妆品牌在这一天提供各种优惠和折扣,吸引了大量消费者。本项目旨在分析和可视化双十一期间淘宝美妆品类的销售数据,帮助消费者洞察不同品牌的折扣策略,并评估各品牌产品的性价比。 数据源 本项目使用的数据源为双十一期间的淘宝美妆销售数据,包括商品分类、品牌、价格、折扣率等信息。数据收集自淘宝平台的公开销售记录,整理成Excel表格进行详细分析。 分析目标 在售商品占比分析:识别双十一期间在售的美妆商品类别和其在市场上的占比。 品牌折扣率分析:比较不同美妆品牌的折扣率,找出提供最大折扣的品牌。 商品数量分布:分析参与双十一活动的各品牌商品数量,评估品牌活动的广泛程度。 折扣套路解析:揭示不同品牌的折扣策略,帮助消费者识别可能的营销套路,例如虚高的原价或者“买一赠一”等促销活动。 商品折扣率:深入分析商品的折扣深度,为消费者提供购买决策支持。 数据分析工具 项目主要使用以下工具进行数据分析和可视化: DataFrame:利用Pandas库构建和处理表格型数据,便于数据清洗、整理和分析。 Matplotlib、Ec

2024-07-23

71 - 去哪儿旅游数据分析

是关于旅游出行数据分析的,具体内容涵盖了对各省市景点的数据分析和可视化。下面是该笔记本的详细描述: 1. 数据概览 笔记本开始于对数据集的导入与基本处理,包括清洗和整理,确保数据质量。数据集涵盖了景点名称、星级、评分、介绍、所在地区、儿童旅客量、销售量及门票价格等信息。 2. 省份数据分析 接下来的分析按照省份进行,例如对海南、江苏和四川的景点数据进行了详细的分析。计算了各省的景点好评率、中评率、差评率,并通过公式进行了四舍五入处理以便更加直观。 3. 价格与评分分析 分析还涉及到根据不同价格区间和星级筛选景点,对数据进行排序,从而找到每个价格区间中销售量最高的景点。此外,还对门票价格进行升序排序,并筛选出评分高于4分的景点。 4. 可视化展示 最后,使用Pyecharts库,笔记本展示了一些基于液态球(Liquid)的动态图表,用于可视化四川等地景点的好评和差评比例。这种图表形式提供了一个直观且互动的方式来展示数据。

2024-07-23

本报告所选数据集下载自kaggle 数据集包含美国 2,392 名高中生的全面信息,详细介绍了他们的人口信息、学习习惯、父母参与

图2-1是以人种分类的GPA箱线图,可以看出,白种人(0)的成绩相对最低,而非裔美籍学生(1)和其他人种(3)的成绩相对更高 ,但各人种成绩分布基本相同,无显著差异。图2-2是以父母受教育程度为分类的GPA箱线图,数值越高代表父母受教育程度越高,从图中可以看出,学生GPA并未与父母受教育程度呈线正相关性,受教育程度为最高的那一批父母的孩子在GPA上的表现甚至是最差的。 图2-3为父母对孩子的支持程度与孩子为分类的GPA箱线图,从图中可以明显的看出,父母对孩子的支持程度与孩子的GPA呈显著正相关,父母对孩子支持程度越高,孩子的成绩越好。图2-4中更是明显的看出在GPA最高的那部分学生,父母的支持是必不可少的。而图2-5则是研究父母的受教育程度与父母对孩子的支持程度是否有关系,从图中可以看出,父母的受教育程度与对孩子的支持程度无显著的关系,受教育程度低的父母也可以给孩子足够的支持。 图2-6中,性别对GPA的影响也是微乎其微的,而请家教则对孩子的

2024-07-21

68 - 深圳链家二手房房源数据分析

本项目主要对链家二手房房源数据进行分析,通过数据可视化了解深圳的二手房源情况,对人们购房做出指导。 二、背景 随着经济的发展,北、上、广、深这四大都市迅速发展,在经济、政治等方面有突出的表现,而且工作机会多,生活质量较高,是大多数人所向往的地方。但是要在这些城市定居是一件不容易的事情,这样来说购买二手房是一个可以选择的方案,说到这我们一定会想了解这些地区的房源大概情况。所以本项目是对深圳链家二手房房源进行的分析,希望可以帮助部分人解决购房问题,从多维度出发分析,帮助买家拿定主意,实现合理的购房。

2024-07-21

67- 上海市互联网行业招聘数据集的构建与可视化分析

上海市互联网行业招聘数据集的构建与可视化分析 期末报告,可以作为期末论文

2024-07-21

基于YOLO5细胞检测实战.zip

在进行基于YOLOv5的细胞检测实战时,完成以下的事情: 1. **数据采集与标注**:详细描述如何采集细胞图像数据,并进行标注。说明采集设备、图像分辨率、标注工具以及标注过程中的质量控制措施。 2. **数据预处理**:解释在输入模型之前对数据进行的预处理步骤,例如图像尺寸的调整、归一化和数据增强方法的选择。强调预处理的重要性以及如何影响模型的性能。 3. **模型选择与调优**:描述为什么选择YOLOv5作为细胞检测的模型,并说明如何调整模型的超参数以适应特定的细胞检测任务。可以讨论模型的架构、损失函数选择以及训练策略。 4. **训练过程**:详细说明模型的训练过程,包括数据集的划分、训练参数的设置、学习率调度方法以及监控训练过程中的性能指标。可以提供训练代码片段或脚本。

2024-02-19

天池-新闻推荐 推荐系统

零基础入门推荐系统 - 新闻推荐 赛题以新闻APP中的新闻推荐为背景,要求选手根据用户历史浏览点击新闻文章的数据信息预测用户未来点击行为,即用户的最后一次点击的新闻文章,测试集对最后一次点击行为进行了剔除。通过这道赛题来引导大家了解推荐系统中的一些业务背景,解决实际问题,帮助竞赛新人进行自我练习、自我提高。

2024-02-19

27 - Titanic 乘客生存决策树预测

Titanic 乘客生存预测流程 数据获取 --> 数据探索 --> 数据清理 --> 特征选择 --> 决策树模型 --> 模型预测和评估 --> 决策树可视化

2024-02-19

SVM对文档进行分类:

## SVM对文档进行分类: `流程:` 文档输入 --> 对文档进行分词 --> 加载停用词 --> 计算单词权重 (准备阶段) --> 生成分类器 --> 分类器做预测 --> 计算正确率 (分类阶段)

2024-02-19

16 - Pytorch​​构建Logistic二分类模型

在逻辑回归中预测的目标变量不是连续的,而是离散的。可以应用逻辑回归的一个示例是电子邮件分类:标识为垃圾邮件或非垃圾邮件。图片分类、文字分类都属于这一类。

2024-02-03

11 - Tensorflow实现卷积神经网络

11 | Tensorflow实现卷积神经网络

2024-02-03

13 - 使用代理ip爬取安居客房源信息

这段Python爬虫代码旨在从安居客网站爬取房地产信息。其中使用了代理IP的技术,主要目的是应对反爬虫机制、提高隐私保护、伪装地理位置、避免频率限制和提升稳定性。

2024-01-14

手动爬取天天基金网基民评论与东方财富网股市行情的资讯,从基民评论、重仓股票、市场行情三个方面LDA模型进行分析

这是一个基金评论与股票市场的情感分析项目,目的是手动爬取天天基金网基民评论与东方财富网股市行情的资讯,从基民评论、重仓股票、市场行情三个方面出发,使用情感词典与LDA模型进行分析,从而做出是否值的购买基金的决策。带有标签clean的是清洗后的爬虫数据,没有带标签的是原始数据或者某个分析后的结果。具体的工作代码放在了“基于情感词典与LDA模型的基金文本研究.ipynb”中,使用的是python 的jupyter notebook。

2023-11-03

03.04 Requests豆瓣.ipynb

对豆瓣单个电影页面元数据进行获取 元数据结构:<br> 1. 导演 2. 编剧 3. 主演 4. 类型 5. 制片国家/地区 6. 语言 7. 上映日期 8. 片长 9. 又名 10. IMDb 11. 豆瓣评分 - 评分 - 评价人数 - 5星评价占比 - 4星评价占比 - 3星评价占比 - 2星评价占比 - 1星评价占比 12. 好于 13. 好于 ## Step 1 找到250部电影的页面 依次解析 具体的页面 爬取1292052...;爬取1292052成功 爬取1291546...;爬取1291546成功 爬取1292720...;爬取1292720成功 爬取1292722...;爬取1292722成功 爬取1295644...;爬取1295644成功 爬取1291561...;爬取1291561成功 爬取1292063...;爬取1292063成功 爬

2023-11-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除