- 博客(1373)
- 资源 (171)
- 问答 (12)
- 收藏
- 关注
原创 基于Django框架开发的音乐播放和分享平台
"我的音乐"是一个基于Django框架开发的在线音乐播放和分享平台,提供用户注册与登录、在线音乐播放、歌词同步显示、智能搜索推荐、歌曲评论互动及音乐排行榜等功能。项目采用Python 3.10+、MySQL数据库,前端使用HTML5/CSS3和JavaScript,支持响应式设计。部署环境包括Docker容器化、Nginx反向代理和uWSGI应用服务器。用户可通过简单的配置步骤快速启动项目,享受完整的在线音乐体验。项目源码可通过联系作者获取。
2025-05-09 08:02:53
577
原创 基于Django技术实现的酒店管理项目
该项目是基于Django技术开发的一套酒店管理系统,系统应用浏览器/服务期(Browser/Server)架构。系统主要包括员工用户功能和管理员用户功能两部分。开发员工信息管理、顾客信息管理、会员信息管理、停车场信息管理、餐厅信息管理、客房信息管理、餐饮订单管理、客房订单管理等功能,管理人员只需要操作系统就可以快捷、方便地完成对酒店管理的各项任务。
2025-05-08 08:00:47
439
原创 基于Django和Bootstrap开发的美食推荐系统
该项目基于Django和Bootstrap实现,旨在为用户提供个性化的美食推荐。系统通过爬虫抓取美食数据并利用ECharts实现数据分析和可视化,帮助用户更直观地了解美食推荐的内容。项目的后端使用MySQL数据库进行数据存储,并且通过Django ORM进行高效的数据库操作。美食数据的爬取与存储美食数据的可视化展示(使用 ECharts)用户友好的前端展示(使用 Bootstrap)
2025-05-08 07:42:45
897
原创 基于Django实现的篮球论坛管理系统
随着体育教育的普及,篮球作为一种广受欢迎的运动,吸引了大量的青少年和成人参与。为了帮助篮球爱好者更加系统地学习篮球技巧、了解篮球战术,设计一个篮球教学论坛平台成为当务之急。此项目旨在利用现代Web技术为篮球爱好者提供一个信息共享、交流互动、技术指导的网络平台。本项目通过Django、SQLite3、HTML5等技术实现了一个篮球教学论坛,具备了用户管理、帖子发布、评论、篮球技巧学习等多种功能。通过不断的测试与优化,确保系统的稳定性和用户体验,最终实现了一个高效、实用的篮球学习平台。
2025-05-08 07:24:29
751
原创 基于Django框架开发的企业级IT资产管理系统
资产管理系统是一个基于Django框架开发的企业级IT资产管理平台,专注于数据中心和IT设备的全生命周期管理。该系统提供了完整的资产管理功能,包括设备管理、数据中心管理、用户权限管理等核心功能。
2025-05-07 23:03:50
698
原创 基于Django框架开发的B2C天天生鲜电商平台
天天生鲜是一个基于Django框架开发的B2C(Business-to-Customer)电商平台,专注于生鲜食品的在线销售。该项目采用了主流的Python Web开发框架Django,结合MySQL数据库、Redis缓存等技术,实现了一个功能完整、界面友好的电商网站。
2025-05-07 22:40:09
410
原创 基于Django框架的股票分红数据爬虫和展示系统
本股票分红数据爬虫和展示系统为用户提供了一个便捷的方式来获取和分析股票分红数据。通过简单的安装和配置步骤,用户可以快速搭建起自己的系统,并使用系统提供的各种功能进行数据查询、导出和图表展示。在使用过程中,用户需要注意遵守相关法律法规,确保数据的合法使用。希望本系统能够为用户的投资研究提供一定的帮助。
2025-05-07 08:11:48
1119
原创 基于Django汽车数据分析大屏可视化系统项目
本项目是一个基于 Python 的汽车数据分析大屏可视化系统,旨在通过直观的可视化界面展示汽车相关数据,帮助用户更好地理解和分析汽车市场动态、车辆性能等信息。系统采用前后端分离的架构,前端使用 Vue 3 框架搭建用户界面,后端使用 Django 框架处理业务逻辑和数据存储,结合 Echart、DataV 等工具实现数据的动态刷新渲染和图表展示。项目截图。
2025-05-07 06:45:57
712
原创 基于Django实现农业生产可视化系统
农业生产可视化系统是一款基于Django+MVT+MySQL架构的Web应用,主要用于农业指标和气象数据的分析与可视化展示。本系统采用简洁易懂的技术栈,特别适合Python Web初学者学习和使用。农业指标数据:包括粮食产量、蔬菜产量等多种农业生产指标气象数据:包括各地区气温、降水量等气象信息本系统集成了数据爬取、清洗、存储和可视化等功能,为农业数据分析提供了全方位解决方案。
2025-04-18 20:22:32
839
原创 基于Djiango实现中药材数据分析与可视化系统
中药材数据分析与可视化系统是一个基于Django框架开发的专业Web应用,致力于对各类中药材数据进行全面、系统的采集、分析和可视化展示。本系统结合现代计算机技术与传统中医药知识,利用网络爬虫技术从专业药材网站获取丰富的数据资源,通过科学的数据清洗和处理手段,以直观的图表形式呈现药材的价格走势、产地分布、使用频率等多维度信息,为中药材研究、市场交易和临床使用提供全方位的数据支持和决策参考。
2025-04-18 07:29:56
2102
1
原创 基于Django实现的图书分析大屏系统项目
图书分析大屏展示系统是一个功能完善、界面美观的Web应用,集成了数据采集、清洗、分析和可视化等多种功能。该系统采用Django+MySQL技术栈,具有良好的扩展性和维护性。通过本教程,您可以轻松部署和运行该系统,并根据需求进行二次开发和功能扩展。无论是作为毕业设计、课程设计还是练习项目,本系统都能帮助您理解并实践Web开发、数据处理和可视化的相关知识,提升您的技术能力和项目经验。
2025-04-17 19:48:30
982
原创 1251 - Client does not support authentication protocol requested by server
通常发生在较新的 MySQL 服务器(如 MySQL 8.0+)与旧版客户端工具(如 MySQL Workbench、Navicat 或某些程序)连接时,原因是 MySQL 8.0 默认使用了更安全的 caching_sha2_password。如果不想修改服务器配置,可以升级客户端工具(如 MySQL Workbench、Navicat 或程序依赖的 MySQL 连接库)到最新版本,以支持。认证插件,而旧客户端可能只支持旧的 mysql_native_password。,因为它既安全又灵活。
2025-04-01 07:30:38
698
原创 21 | 分析中证医药ETF跌幅情况
例如,2021年6月和2022年9月,这两个季度的跌幅分别达到了14.83%和17.72%,这表明在某些季度,ETF的表现极为不理想,投资者面临较大的损失。:通过计算每日的涨跌幅,我们可以观察到,ETF的价格波动并不平稳,特别是在某些特定日期,跌幅较大。:对于打算投资中证医药ETF的投资者,建议在未来进行投资时,充分了解行业的周期性波动,并在决定投资时谨慎评估市场风险。通过对这些数据的分析,我们可以计算出每日的涨跌幅、累计收益、以及每季度的跌幅,从而全面揭示该ETF的波动性和长期走势。
2025-02-09 18:44:11
146
原创 20 | 基金类型可视化
通过基金类型的分布分析,我们可以看到,市场上混合型基金和指数型基金占据了主导地位,显示出投资者对这些类型的青睐。在投资市场中,基金作为一种重要的理财工具,其种类繁多,投资者往往依据基金类型来选择合适的投资对象。在未来,随着市场环境的变化,基金类型的分布可能会发生变化,但目前这些基金类型的分布反映了不同风险偏好的投资者对市场的需求。本文通过爬取天天基金网站的数据,整理并分析了各类基金的分布情况。通过对基金类型的统计分析,我们能够直观地了解市场上最常见的基金类型及其分布。获取了所有基金的基本信息。
2025-02-09 17:29:38
92
原创 绘制中国平安股价的交互式 K 线图
在本文中,探索如何使用 Python 的强大库进行股市数据分析与可视化。sh601318)为例,展示如何获取其股票数据,并绘制一张交互式 K 线图。K 线图是股市分析中不可或缺的工具,它能够直观地显示股票的波动情况,包括开盘价、收盘价、最高价和最低价。此外,我们还将结合5日和10日均线,进一步分析股票的趋势。通过这些交互式图表,您不仅可以轻松跟踪股市动态,还能更直观地理解股价变化。
2025-02-09 16:56:15
327
原创 019 | backtrader回测布林带突破策略
布林带突破策略(Bollinger Bands Breakout Strategy)是一种基于布林带指标的交易策略。布林带是一种技术分析工具,由约翰·布林格(John Bollinger)在20世纪80年代提出。布林带由一条中间的简单移动平均线(SMA)以及上下两条波动带(通常是2个标准差)构成,用于衡量价格的波动范围。布林带突破策略利用价格突破布林带上下轨的信号来生成买卖决策。该策略假设,当价格突破布林带上轨时,市场可能会延续上涨趋势;当价格跌破布林带下轨时,市场可能会延续下跌趋势。
2024-08-11 11:02:12
1273
原创 018 | backtrader回测反转策略
反转策略(Reversal Strategy)是一种试图捕捉市场价格趋势逆转的交易策略。与趋势跟随策略不同,反转策略的核心理念是“物极必反”,即价格在经过一段时间的单边趋势后,往往会出现逆转的机会。交易者通过识别这些即将到来的反转点,在市场趋势反转时进行买卖操作,从而获取利润。反转策略是一种试图捕捉市场价格转折点的交易策略,通过在市场超买或超卖状态下进行反向操作,交易者可以在市场反转时获取利润。然而,由于反转点的预测难度较大,该策略具有较高的风险和不确定性。
2024-08-11 10:59:05
1111
原创 017 | backtrader回测趋势跟随策略
趋势跟随策略(Trend Following Strategy)是一种基于市场趋势的交易策略。其核心理念是“趋势是你的朋友”(The trend is your friend),即一旦市场显示出明确的趋势方向(无论是上涨还是下跌),该策略就会跟随这一趋势进行交易,直到市场趋势发生反转。趋势跟随策略不试图预测市场的转折点,而是通过识别并跟随现有的趋势来获取利润。趋势跟随策略是一种经典的交易策略,通过识别并跟随市场趋势来获取利润。尽管在震荡市场中可能表现不佳,但在明确的趋势市场中,该策略往往能带来可观的收益。
2024-08-11 10:54:21
1051
原创 016 | backtrader回测波动率策略
波动率策略(Volatility Strategy)是一种基于市场波动性的交易策略。波动率反映了资产价格的波动幅度,通常用来衡量市场的不确定性和风险。波动率策略通过分析和利用波动率的变化,来制定买卖决策。这类策略可以在波动性增加时捕捉市场波动带来的机会,或者在波动性下降时调整持仓以避免风险。波动率策略是一种重要的市场工具,尤其在高波动性环境下,通过对波动性的分析和利用,投资者可以捕捉市场波动带来的机会,并有效管理风险。
2024-08-11 10:48:26
1872
原创 015 | backtrader回测动量策略
动量策略(Momentum Strategy)是一种基于资产价格或收益动量的交易策略。动量策略假设“强者恒强,弱者恒弱”,即近期表现强劲的资产在未来仍可能延续其趋势,而近期表现疲软的资产在未来可能继续走弱。因此,动量策略的核心思想是买入那些表现良好的资产,卖出或做空表现不佳的资产。起始资金:100,000元最终资金:101,831.91元策略表现:回测结果显示,动量策略在此段时间内实现了小幅盈利,资金增加了约1,831.91元。尽管策略频繁买卖,最终的盈利结果表明该策略在这个特定时间段内有效。
2024-08-11 10:38:00
1047
原创 014 | backtrader回测均值回归策略
均值回归策略(Mean Reversion Strategy)是一种基于统计学原理的交易策略,假设金融资产的价格会回归其长期平均水平或“均值”。这种策略假设资产价格在短期内可能会偏离其历史均值,但最终会回归到该均值。这种偏离均值的现象在市场中被视为暂时性的机会,因此交易者可以通过在价格偏离均值时买入或卖出资产,从中获利。起始资金:100,000元最终资金:98,306.92元策略表现:回测结果显示,均值回归策略在此段时间内并未能带来盈利,反而导致了资金的略微缩水(亏损约1,693.08元)。
2024-08-11 10:21:44
1299
原创 013 | backtrader回测沪深300指数简单移动平均线交叉策略
简单移动平均线(SMA)是某一段时间内价格的平均值。策略通常使用两条SMA:一条短周期SMA(例如10天)和一条长周期SMA(例如30天)。买入信号当短周期SMA上穿长周期SMA时,产生买入信号。这意味着短期价格趋势强于长期趋势,可能预示着价格将继续上涨。卖出信号当短周期SMA下穿长周期SMA时,产生卖出信号。这意味着短期价格趋势变弱,可能预示着价格将下跌。简单移动平均线交叉策略是技术分析中的一个基础策略,它利用不同周期均线的交叉来判断市场趋势并做出交易决策。
2024-08-11 10:13:22
1667
原创 012 | akshare分析NYBOT棉花历史数据
在Akshare库中,行业与公司数据的获取是非常重要的一部分,尤其是对从事行业研究和公司基本面分析的人来说。这张图展示了纽约期货交易所(NYBOT)棉花历史价格数据与两条简单移动平均线(SMA)的关系。该图表通过结合历史价格数据与短期和长期的移动平均线,帮助分析者识别买入和卖出的潜在机会点。👉👉👉 《玩转Python金融量化专栏》👈👈👈。👉👉👉 《玩转Python金融量化专栏》👈👈👈。订阅本专栏的可以下载对应的代码和数据集。订阅本专栏的可以下载对应的代码和数据集。
2024-08-11 09:57:34
251
原创 011 | efinance分析豆一主连期货
这个图表通过结合豆一的价格走势与两条关键的SMA线条,直观地展示了价格趋势的变化以及买卖信号的触发点。投资者可以通过这些信号做出更为理性的交易决策,从而在市场波动中获得更好的收益。通过这种技术分析方法,可以有效地捕捉市场中的趋势反转点,为投资决策提供重要的参考依据。👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集🚀上一篇🌟下一篇⬅️ 010 东方财富帖子标题情绪分析012 akshare分析NYBOT棉花历史数据 ➡️。
2024-08-11 08:58:16
321
原创 008 | 基于RNN和LSTM的贵州茅台股票开盘价预测
本项目旨在通过使用Tushare下载贵州茅台的股票数据,并基于这些历史数据,使用TensorFlow 2.0实现循环神经网络(RNN)和长短期记忆网络(LSTM)来预测股票的开盘价。本项目提供了完整的数据获取、处理、模型构建和预测的流程。
2024-08-10 20:32:14
696
原创 007 | 期权定价与布莱克-斯科尔斯计算
👉👉👉 《玩转Python金融量化专栏》👈👈👈 订阅本专栏的可以下载对应的代码和数据集布莱克-斯科尔斯公式是金融工程学中的一项重要成就,用于计算欧式期权(只能在到期日行权)的理论价格。它假设市场是有效的,资产价格服从几何布朗运动。布莱克-斯科尔斯公式计算看涨期权(Call Option)和看跌期权(Put Option)价格的公式如下:C=S0⋅N(d1)−X⋅e−rT⋅N(d2)C = S_0 \cdot N(d_1) - X \cdot e^{-rT} \cdot N(d_2)C=S0
2024-08-10 20:24:53
152
原创 006 | 资本资产定价模型 (CAPM)
👉👉👉 《玩转Python金融量化专栏》👈👈👈订阅本专栏的可以下载对应的代码和数据集资本资产定价模型 (CAPM) 是金融学中用于评估资产(如股票)的预期回报率的一种模型。它帮助投资者理解某种资产的回报率如何与其风险水平相关联。
2024-08-10 20:01:46
176
原创 005 | 马科维茨投资组合理论实现
马科维茨投资组合理论(Markowitz Portfolio Theory)是现代投资组合理论的奠基石,由哈里·马科维茨(Harry Markowitz)于1952年提出。这一理论为投资组合管理引入了数学的精确性,奠定了现代金融学的重要基础。通过量化的方式,马科维茨理论为投资者提供了在多资产投资组合中如何优化资产配置的方法,以实现特定的投资目标。数据获取:使用Tushare获取指定股票的历史收盘价数据,并计算每日收益率。风险与收益计算:基于收益率数据,计算每个股票的预期收益和协方差矩阵。优化。
2024-08-10 16:46:26
1019
原创 002 | 常见的金融量化指标计算
通过上述代码,我们展示了如何使用 Tushare 获取股票数据,并计算多种常见的金融量化指标。这些指标可以帮助分析市场趋势、评估风险和收益,从而构建更为复杂的交易策略。在实际应用中,可以根据自己的需求调整指标的参数和选择的时间窗口,并结合其他数据源和工具进行更深入的分析。
2024-08-10 15:49:47
1633
原创 74| 前程无忧python岗位信息爬取和分析
爬取2023年前程无忧网站上搜索关键字“python”,所得到的数据约1000多条(只有这么多),并对这些数据进行清洗,分析及可视化处理。包括不同学历要求下岗位数量分布,不同工作经验相对真实月薪,各地区相对真实月薪,各城市地区的岗位数量分布,福利待遇关键词,平均月薪,公司最喜欢招聘有多少年经验的人等7种分析。
2024-08-09 07:10:36
323
原创 72 | 数据分析岗位招聘数据可视化
本项目旨在通过对智联招聘网站上发布的数据分析岗位信息的分析和可视化,帮助应届毕业生和希望进入数据分析行业的专业人士更好地理解当前的就业市场。通过收集包含职位名称、薪资范围、地点、工作经验、学历要求等关键信息的数据,项目深入探讨了数据分析岗位的多个维度。
2024-07-23 20:42:53
348
原创 70 | 双十一美妆数据分析可视化
双十一,作为全球最大的购物狂欢节,提供了丰富的数据资源,特别是在美妆产品类别中。美妆品牌在这一天提供各种优惠和折扣,吸引了大量消费者。本项目旨在分析和可视化双十一期间淘宝美妆品类的销售数据,帮助消费者洞察不同品牌的折扣策略,并评估各品牌产品的性价比。通过精心设计的图表,项目详细展示了各类数据分析结果,包括商品分类、商品数量分布、不同品牌的折扣率、打折套路以及商品折扣率。本项目使用的数据源为双十一期间的淘宝美妆销售数据,包括商品分类、品牌、价格、折扣率等信息。
2024-07-23 20:30:25
566
原创 67| 上海市互联网行业招聘数据集的构建与可视化分析
在对单个职位的数据进行清洗后,我将所有职位的数据整合成一个统一的数据集,方便进行综合分析。集经过清洗和处理,包含了各职位的职位名称、公司名称、公司类型及规模、学历要求、技能要。名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资等信息。分析互联网行业的总体薪资和各职位的薪资分布可以帮助求职者了解不同职位的薪资水平。总之,本项目的研究为进一步探索和分析互联网行业的职位需求提供了有力支持,未来的研究。职位名称、公司名称、公司类型及规模、学历要求、技能要求、工作经验要求和薪资。
2024-07-21 14:50:11
494
原创 Tensorflow深度学习系列专栏简介
在深度学习系列专栏中,我们将深入探讨TensorFlow两个领先的深度学习框架,为读者提供全面而实用的知识。专栏始于深度学习的基础概念,包括神经网络结构、前馈与反向传播等核心知识,为初学者提供坚实的基础。通过这一系列,我们旨在为读者提供一个全面的学习路径,帮助初学者建立深度学习的基础,同时为有经验的开发者提供深入探讨框架内部机制的机会。我们相信这个专栏将为深度学习爱好者和从业者提供有价值的学习资源,助力大家更好地理解和应用深度学习技术。
2024-02-26 06:49:57
910
2
原创 9 | Tensorflow io流和 tfrecord读取操作
tf.io模块是 TensorFlow 中用于处理输入输出(I/O)操作的工具模块,提供了许多常见的函数,用于读写文件、处理图像、序列化和反序列化数据等。以下是一些常见的tf.io这些函数提供了在 TensorFlow 中进行常见 I/O 操作所需的工具。具体的使用方式可以根据你的任务和数据类型进行调整。
2024-01-19 08:27:58
889
原创 8 | Tensorflow中的batch批处理
TensorFlow支持批处理(batch processing)。批处理是指同时处理多个样本或数据点而不是单个样本。在深度学习中,批处理通常用于提高训练的效率和稳定性。在TensorFlow中,可以使用 API来设置和处理批处理数据。这允许以批处理的方式加载和处理数据,适用于训练神经网络模型。以下是一个简单的TensorFlow批处理的示例代码:这个例子中, 用于将输入数据切片成小批次,然后通过 和 方法进行打乱和批处理。常见的批处理操作主要涉及 TensorFlow 中的 类和相关函数,用于处理
2024-01-16 07:31:42
780
原创 13 | 使用代理ip爬取安居客房源信息
在上述代码中,通过调用代理API获取代理IP,然后在爬虫请求中使用这些代理IP,从而达到绕过反爬虫机制、提高稳定性和保护隐私的目的。需要注意的是,在使用代理IP时,应确保遵守相关法规和网站的使用条款,以免引起不必要的法律问题。该爬虫使用了代理IP来绕过可能的封禁,并提供了一些基本的信息抽取功能。通过使用代理IP,可以更换请求的源IP,减少被封锁的风险。通过使用代理IP,可以模拟不同地理位置的访问,获取更全面的数据。代理IP服务商通常提供稳定的网络连接和高质量的IP地址,可以提高爬虫的稳定性和可靠性。
2024-01-14 20:56:42
824
基于Django技术实现的酒店管理项目.zip
2025-05-08
基于Django和Bootstrap开发的美食推荐系统.zip
2025-05-08
基于Django实现的篮球论坛管理系统.zip
2025-05-08
基于Django框架开发的企业级IT资产管理系统.zip
2025-05-07
基于Django框架开发的B2C天天生鲜电商平台.zip
2025-05-07
基于Django汽车数据分析大屏可视化系统项目
2025-05-07
基于Django实现农业生产可视化系统
2025-04-18
基于django实现的中药材数据分析与可视化系统
2025-04-17
京东图书分析大屏展示系统项目
2025-04-17
019 - backtrader回测布林带突破策略
2024-08-11
018 - backtrader回测反转策略
2024-08-11
017 - backtrader回测趋势跟随策略
2024-08-11
016 - backtrader回测波动率策略
2024-08-11
015 - backtrader回测动量策略
2024-08-11
014 - backtrader回测均值回归策略
2024-08-11
013 - backtrader回测沪深300指数简单移动平均线交叉策略
2024-08-11
012 - akshare分析NYBOT棉花历史数据
2024-08-11
011 - efinance分析豆一主连期货
2024-08-11
010 - 东方财富帖子标题情绪分析
2024-08-10
009 - 上证50ETF基金数据分析及预测
2024-08-10
008 - 基于RNN和LSTM的贵州茅台股票开盘价预测
2024-08-10
本项目旨在通过对智联招聘网站上发布的数据分析岗位信息的分析和可视化,帮助应届毕业生和希望进入数据分析行业的专业人士更好地理解当前
2024-07-23
70 - 双十一美妆数据分析可视化
2024-07-23
71 - 去哪儿旅游数据分析
2024-07-23
本报告所选数据集下载自kaggle 数据集包含美国 2,392 名高中生的全面信息,详细介绍了他们的人口信息、学习习惯、父母参与
2024-07-21
68 - 深圳链家二手房房源数据分析
2024-07-21
基于YOLO5细胞检测实战.zip
2024-02-19
天池-新闻推荐 推荐系统
2024-02-19
27 - Titanic 乘客生存决策树预测
2024-02-19
SVM对文档进行分类:
2024-02-19
16 - Pytorch构建Logistic二分类模型
2024-02-03
13 - 使用代理ip爬取安居客房源信息
2024-01-14
手动爬取天天基金网基民评论与东方财富网股市行情的资讯,从基民评论、重仓股票、市场行情三个方面LDA模型进行分析
2023-11-03
03.04 Requests豆瓣.ipynb
2023-11-01
gitcode 可以搭建gitpage
2022-08-25
启动CDH,报错ERROR StatusLogger No log4j2 configuration file found. Using default configuration...ogging.
2020-03-16
cloudera-manager-agent.x86_安装报错
2020-03-15
Sqoop导入数据到Hbase报错
2020-03-01
Centos7运行Elasticsearch6.5.4报错
2020-01-13
Centos7运行elasticsearch-6.5.4报错
2020-01-09
为什么在腾讯云服务器测试uwgis老是失败
2019-11-17
为什么在腾讯云服务器测试uwgis老是失败
2019-11-17
npm安装全局怎么使用加速?
2019-04-23
npm安装全局怎么使用淘宝源加速?
2019-04-22
npm这种情况,nodejs是不是安装好了
2019-04-18
TA创建的收藏夹 TA关注的收藏夹
TA关注的人