关闭

分布式搜索elasticsearch java API 之(一)------与集群交互

标签: javaapi集群单元测试jvm
19719人阅读 评论(26) 收藏 举报
分类:

注意:这是es1.x及以下版本的交互方式,新的2.x版本的请浏览es官网,里面有比较详细的例子(https://www.elastic.co/guide/en/elasticsearch/client/java-api/current/transport-client.html)


这是关于elasticsearch java api的第一篇教程,陆续会把es的一些心得写出来。

可以通过两种方式来连接到elasticsearch(简称es)集群,第一种是通过在你的程序中创建一个嵌入es节点(Node),使之成为es集群的一部分,然后通过这个节点来与es集群通信。第二种方式是用TransportClient这个接口和es集群通信。

Node方式

创建嵌入节点的方式如下:

import static org.elasticsearch.node.NodeBuilder.*;  
//启动节点 
Node node = nodeBuilder().node(); 
Client client = node.client();  
//关闭节点
node.close();


当你启动一个节点,它会自动加入同网段的es集群,一个前提就是es的集群名(cluster.name)这个参数要设置一致。

默认的话启动一个节点,es集群会自动给它分配一些索引的分片,如果你想这个节点仅仅作为一个客户端而不去保存数据,你就可以设置把node.data设置成false或 node.client设置成true。下面是例子:

Node node = nodeBuilder().clusterName(clusterName).client(true).node(); 


还有一种情况是你并不想把节点加入集群,只想用它进行单元测试时,就要启动一个“本地”的es,这里“本地”指的是在jvm的级别下运行,即两个不同的es节点运行在同一个JVM中时会组成一个集群。它需要把节点的local参数设置成true,下面是例子:

Node node = nodeBuilder().local(true).node(); 

TransportClient方式
通过TransportClient这个接口,我们可以不启动节点就可以和es集群进行通信,它需要指定es集群中其中一台或多台机的ip地址和端口,例子如下:

Client client = new TransportClient() 
        .addTransportAddress(new InetSocketTransportAddress("host1", 9300)) 
        .addTransportAddress(new InetSocketTransportAddress("host2", 9300)); 
 
client.close();

    
如果你需要更改集群名(默认是elasticsearch),需要如下设置:

Settings settings = ImmutableSettings.settingsBuilder() 
                .put("cluster.name", "myClusterName").build(); 
Client client = new TransportClient(settings);

你可以设置client.transport.sniff为true来使客户端去嗅探整个集群的状态,把集群中其它机器的ip地址加到客户端中,这样做的好处是一般你不用手动设置集群里所有集群的ip到连接客户端,它会自动帮你添加,并且自动发现新加入集群的机器。代码实例如下:

Settings settings = ImmutableSettings.settingsBuilder() 
                .put("client.transport.sniff", true).build(); 
TransportClient client = new TransportClient(settings);


 参考资料:http://www.searchtech.pro/articles/2013/02/18/1361194853254.html

5
2

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:688934次
    • 积分:7676
    • 等级:
    • 排名:第2858名
    • 原创:69篇
    • 转载:3篇
    • 译文:8篇
    • 评论:813条
    博客专栏
    文章分类
    最新评论